Answer: Christine Herman & L.G Wade Jr., "2010". Organic Chemistry: Reaction of Alkane, 7e, Pearson Education, Radford University, Radford, VA.
Explanation:
This is an edited book. The Harvard reference style was used in the following order:
Authors name
Year of publication
Title
Edition
Publisher
Place of publication.
Note that the title of book should be italicized with capitalization of first word.
Solids have a definite shape, and a definite volume.
Liquids have a definite volume, but have no definite shape.
Gas have neither a definite volume nor a definite shape.
Hope this helps!
Answer:
Explanation:
This is a limiting reactant problem.
Mg(s)
+
2HCl(aq)
→
MgCl
2
(
aq
)
+ H
2
(
g
)
Determine Moles of Magnesium
Divide the given mass of magnesium by its molar mass (atomic weight on periodic table in g/mol).
4.86
g Mg
×
1
mol Mg
24.3050
g Mg
=
0.200 mol Mg
Determine Moles of 2M Hydrochloric Acid
Convert
100 cm
3
to
100 mL
and then to
0.1 L
.
1 dm
3
=
1 L
Convert
2.00 mol/dm
3
to
2.00 mol/L
Multiply
0.1
L
times
2.00 mol/L
.
100
cm
3
×
1
mL
1
cm
3
×
1
L
1000
mL
=
0.1 L HCl
2.00 mol/dm
3
=
2.00 mol/L
0.1
L
×
2.00
mol
1
L
=
0.200 mol HCl
Multiply the moles of each reactant times the appropriate mole ratio from the balanced equation. Then multiply times the molar mass of hydrogen gas,
2.01588 g/mol
0.200
mol Mg
×
1
mol H
2
1
mol Mg
×
2.01588
g H
2
1
mol H
2
=
0.403 g H
2
0.200
mol HCl
×
1
mol H
2
2
mol HCl
×
2.01588
g H
2
1
mol H
2
=
0.202 g H
2
The limiting reactant is
HCl
, which will produce
0.202 g H
2
under the stated conditions.
pls mark as brainliest ans
464 g radioisotope was present when the sample was put in storage
<h3>Further explanation</h3>
Given
Sample waste of Co-60 = 14.5 g
26.5 years in storage
Required
Initial sample
Solution
General formulas used in decay:

t = duration of decay
t 1/2 = half-life
N₀ = the number of initial radioactive atoms
Nt = the number of radioactive atoms left after decaying during T time
Half-life of Co-60 = 5.3 years
Input the value :

Answer:
CH2O
Explanation:
Firstly, we need to convert the masses of the elements to percentage compositions. This can be done by placing the mass of each element over the total mass multiplied by 100% . We can start with carbon.
C = 5.692/14.229 * 100 = 40%
O = 7.582/14.229 * 100 = 53.29%
H = 0.955/14.229 * 100 = 6.71%
We then proceed to divide each percentage composition by their atomic mass of 12, 16 and 1 respectively.
C = 40/12 = 3.333
O = 53.29/16 = 3.33
H = 6.71/2 = 6.71
Dividing by the smaller value which is 3.33
C = 3.33/3.33 = 1
O = 3.33/3.33= 1
H = 6.71/3.33 = 2
The empirical formula of the compound ribose is CH2O