Answer:
The corona shines only about half as brightly as the Moon and is normally not visible to the unaided eye, because its light is overwhelmed by the brilliance of the solar surface. During a total solar eclipse, however, the Moon blocks out the light from the photosphere, permitting eye observations of the corona.
Answer:
74.0 g/mol
Explanation:
Step 1: Write the generic neutralization reaction
HA + NaOH ⇒ NaA + H₂O
Step 2: Calculate the reacting moles of NaOH
At the equivalence point, 33.83 mL of 0.115 M NaOH react.
0.03383 L × 0.115 mol/L = 3.89 × 10⁻³ mol
Step 3: Calculate the moles of HA that completely react with 3.89 × 10⁻³ moles of NaOH
The molar ratio of HA to NaOH is 1:1. The reacting moles of HA is 1/1 × 3.89 × 10⁻³ mol = 3.89 × 10⁻³ mol.
Step 4: Calculate the molar mass of the acid
3.89 × 10⁻³ moles of HA have a mass of 0.288 g.
M = 0.288 g / 3.89 × 10⁻³ mol = 74.0 g/mol
Answer:
Don’t change, keep the same
Explanation:
So,
Formate has a resonating double bond.
In molecular orbital theory, the resonating electrons are actually delocalized and are shared between the two oxygens. So the carbon-oxygen bonds can be described as 1.5-bonds (option B). I'm not sure if option C is correct, however, because the likelihood of both delocalized electrons being in the area of one oxygen atom is less than 50%.<span />
MnCl2(aq) is an ionic compound which will have the releasing of 2 Cl⁻ ions ions in water for every molecule of MnCl2 that dissolves.
MnCl2(s) --> Mn+(aq) + 2 Cl⁻(aq)
[Cl⁻] = 0.92 mol MnCl2/1L × 2 mol Cl⁻ / 1 mol MnCl2 = 1.8 M
The answer to this question is [Cl⁻] = 1.8 M