Iron and steel are magnetic in nature. So you can use a magnet to separate them
The anion<span> is also </span>larger than<span> the </span>atom<span> because of </span>electron-electron repulsion<span>. As more </span>electrons are<span> added to the </span>outer shell<span>, and even to </span>higher<span> principle energy levels, the </span>repulsion<span> bewteen the negatively charged particles grows, pushing the </span>shells<span> farther from the nucleus.</span>
The production of
is
. Converting mass into kg,
1 ton=907.185 kg, thus,

Thus, production of
will be
.
The specific volume of
is
.
Volume of
produced per day can be calculated as:

Putting the values,

Thus, volume of
produced per year will be:

Thus, in 4 year volume of
produced will be:

Answer:
1. E. mitochondrion
2. C. chloroplasts
3. G. vacuole
4. A. cell membrane
5. B. cell wall
6. D.cytoplasm
7. F. Nucleus
8. cytoplasm
9. cell membrane
10. chloroplast
11. mitochondrion
12. nucleus
13. cell wall
14. vacuole
Explanation:
- Be familiar which each term.
- Look up diagram to understand image.
- Hope that helped! Please let me know if you need further explanation on each word.
<u>Answer:</u> The mass of solution that the chemistry student should use is 23.4 grams
<u>Explanation:</u>
We are given:
Available mass of isopropenylbenzene = 120. g
Amount of isopropenylbenzene needed by chemistry student = 10.00 g
42.7 % (w/w) solution of isopropenylbenzene.
This means that 42.7 grams of isopropenylbenzene is present in 100 grams of solution.
To calculate the mass of solution for given needed of isopropenylbenzene, we apply unitary method:
For 42.7 grams of isopropenylbenzene, the amount of solution needed is 100 grams
So, for 10.00 grams of isopropenylbenzene, the amount of solution needed will be = 
Hence, the mass of solution that the chemistry student should use is 23.4 grams