Answer:
4.37 g of barium sulphate
Explanation:
The reaction equation is;
3BaCl2(aq) + Fe2(SO4)3(aq) ---->3 BaSO4(s) + 2FeCl3(aq)
From the question, the number of moles of both barium chloride and FeSO4 = 125/1000 L × 0.150 M = 0.01875 moles
To find the limiting reactant;
3 moles of barium chloride yields 3 moles of barium sulphate
0.01875 moles of barium chloride yields 3 × 0.01875 moles/3 = 0.01875 moles of barium sulphate
1 mole of iron III sulphate yields 3 moles of barium sulphate
0.01875 molesof iron III sulphate yields 0.01875 moles ×3/1 = 0.05625 moles of barium sulphate
Hence,barium chloride is the limiting reactant
Amount of barium sulphate produced = 0.01875 moles × 233 g/mol = 4.37 g of barium sulphate
1 Cellular Respiration
2 Photosynthesis
3 Photosynthesis
4 Cellular respiration
Answer:
a producer and consumer relationship how several food chains and related.
Answer:
The stronger conjugate base will be the weaker acid; i.e., the acid with the smaller Ka-value.
Explanation:
Given conjugate base CN⁻ => weak acid => HCN => Ka =4.9 x 10⁻¹⁰
Given conjugate base OCN⁻ => weak acid=> HOCN => Ka = 3.5 x 10⁻⁴
Ka(HCN) << Ka(HOCN) => CN⁻ is a much stronger conjugate base than OCN⁻