2.75 x 10^24
Hope this helped :)
Answer:
15. 2.66 moles .
16. 2.09L.
Explanation:
Molarity of a solution is simply defined as the mole of solute per unit litre of the solvent. Mathematically, it is represented as:
Molarity = mole /Volume.
With the above formula, let us answer the questions given above
15. Data obtained from the question include the following:
Volume of solution = 1.4L
Molarity = 1.9M
Mole of solute =.?
Molarity = mole /Volume
1.9 = mole / 1.4
Cross multiply
Mole = 1.9 x 1.4
Mole = 2.66 moles
Therefore, the mole of the solute present in the solution is 2.66 moles.
16. Data obtained from the question include the following:
Mole of solute = 0.46 mole
Molarity = 0.22M
Volume of solvent (water) =.?
Molarity = mole /Volume
0.22 = 0.46/Volume
Cross multiply
0.22 x Volume = 0.46
Divide both side 0.22
Volume = 0.46/0.22
Volume = 2.09L
Therefore, 2.09L of water is required.
The factors that affect geometry of a molecule are
> The number of bonding electron pairs around the central atom.
> The number of pairs of non-bonding ("lone pair") electrons around the central atom.
<h3>
Answer:</h3>
3CaCl₂ + 2Na₃PO₄→ Ca₃(PO₄)₂ + 6NaCl
<h3>
Explanation:</h3>
We are given the Equation;
CaCl₂ + Na₃PO₄→ Ca₃(PO₄)₂ + NaCl
Assuming the question requires us to balance the equation;
- A balanced chemical equation is one that has equal number of atoms of each element on both sides of the equation.
- Balancing chemical equations ensures that they obey the law of conservation of mass in chemical equations.
- According to the law of conservation of mass in chemical equation, the mass of the reactants should always be equal to the mass of the products.
- Balancing chemical equations involves putting appropriate coefficients on the reactants and products.
In this case;
- To balance the equation we are going to put the coefficients 3, 2, 1, and 6.
- Therefore; the balanced equation will be;
3CaCl₂ + 2Na₃PO₄→ Ca₃(PO₄)₂ + 6NaCl