Answer:
The heating and melting of wax
Explanation:
When a candle is burned the wax heats up, but when cooled it hardens and cannot be put back into it original form.
Hope this helps
Please mark me as Brainliest
Ok I’m figuring this one out
It can be formed by H+ ion and an H20 molecule also the chemical formula is H30+ or in other and easier way thus formula
H+ + H20=H30+
Answer:
36 KJ of heat are released when 1.0 mole of HBr is formed.
Explanation:
<em>By Hess law,</em>
<em>The heat of any reaction ΔH for a specific reaction is equal to the sum of the heats of reaction for any set of reactions which in sum are equivalent to the overall reaction:</em>
H 2 (g) + Br 2 (g) → 2HBr (g) ΔH = -72 KJ
This is the energy released when 2 moles of HBr is formed from one mole each of H2 and Br2.
Therefore, Heat released for the formation of 1 mol HBr would be half of this.
Hence,
ΔHreq = -36 kJ
36 KJ of heat are released when 1.0 mole of HBr is formed.
Answer:
2 C 2 H 2 ( g ) + 5 O 2 ( g ) ⟶ 4 C O 2 ( g ) + 2 H 2 O ( l )- combustion reaction
N H 4 N O 3 ( s ) ⟶ N 2 O ( g ) + 2 H 2 O ( l )- decomposition reaction
C O ( g ) + 2 H 2 ( g ) ⟶ C H 3 O H ( l ) - combination reaction
2 F e ( s ) + 6 H C l ( a q ) ⟶ 2 F e C l 3 ( a q ) + 3 H 2 ( g )- Redox reaction
C a C l 2 ( a q ) + N a 2 C O 3 ( a q ) ⟶ 2 N a C l ( a q ) + C a C O 3 ( s )- double displacement reaction
Explanation:
We can determine the type of reaction by considering the reactants and products.
Combustion is a reaction between a substance and oxygen which produces heat and light. The first reaction is the equation for the combustion of ethyne.
A decomposition reaction is one in which a single reactant breaks down to form products. The second reaction is the decomposition of ammonium nitrate.
A combination reaction is said to occur when two elements or compounds react to form a single product. The third reaction is the combination of carbon dioxide and methane to form methanol.
An oxidation-reduction reaction is a reaction in which there is a change in oxidation number of species from left to right of the chemical reaction equation. The fourth reaction is the oxidation of iron (0 to +3 state) and reduction of hydrogen (+1 to 0 state).
A double displacement reaction is a reaction in which ions exchange partners from left to right in the reaction equation. The fifth reaction is a double displacement reaction. Both Na^+ and Ca^2+ exchanged partners from left to right of the reaction equation.