if a volume of air is warmed it expands due to increased translational kinetic energy as it expands it will start to cool.
<h3>When does temperature increase volume?</h3>
We can then conclude that at constant pressure, temperature and volume are directly proportional: temperature increases, volume increases; decrease temperature, decrease volume.
In this case, the higher the temperature, the greater the kinetic energy that acts on the molecules of this gas, so when the gas expands, these molecules find more space and collide less, which will cause the gas to cool.
See more about volume at brainly.com/question/1578538
#SPJ12
Answer:
ΔS=2*m*Cp*ln((T1+T2)/(2*(T1*T2)^1/2))
Explanation:
The concepts and formulas that I will use to solve this exercise are the integration and the change in the entropy of the universe. To calculate the final temperature of the water the expression for the equilibrium temperature will be used. Similarly, to find the change in entropy from cold to hot water, the equation of the change of entropy will be used. In the attached image is detailed the step by step of the resolution.
Answer:
The star-sphere discovered by the Greeks and other ancient civilizations which shows the physical location in space of the nearby stars.
Explanation:
The celestial sphere is an ideal sphere, without defined radius, concentric with the terrestrial globe, in which the stars apparently move. Some ancient civilizations such as the Greeks assumed that the stars were attached to a celestial sphere, which revolves around the earth, while our planet is always immobile.
Answer:
7056 kJ
Explanation:
Given that,
Mass of a ship roller coaster is 36,000 kg.
It reaches a height of 20 m off the ground
We need to find the gravitational potential energy does it have. The formula for the gravitational potential energy ios given by :
E = mgh
g is acceleration due to gravity
E = 36,000 kg × 9.8 m/s² × 20 m
= 7056000 J
or
E = 7056 kJ
So, it will have 7056 kJ of gravitational potential energy.
Answer:
The 40g mass will be attached at 69 cm
Explanation:
First, make a sketch of the meterstick with the masses placed on it;
--------------------------------------------------------------------------
↓ Δ ↓
20 g.................50 cm.................40g
38 cm y cm
Apply principle of moment;
sum of clockwise moment = sum of anticlockwise moment
40y = 20 (38)
40y = 760
y = 760 / 40
y = 19 cm
Therefore, the 40g mass will be attached at 50cm + 19cm = 69 cm
12cm 50 cm 69cm
--------------------------------------------------------------------------
↓ Δ ↓
20 g.................50 cm.................40g
38 cm 19 cm