Answer:
C 3.33 Ω
Explanation:
From the equation given 1 / Rtot = 1/10 + 1/5 = 3/10
then Rtot = 10/3 = 3.33 Ω
As an aside:
When there are only two resistors in parallel, the equivalent R is
= R1*R2 / (R1 + R2) = 10*5 / (10+5) = 50 / 15 = 3.33 Ω
The heat gun<span> obviously wins this round. Master Appliance </span>heat guns<span> can reach temperatures of up to 1,000 Fahrenheit. A handheld </span>blow dryer<span> might reach 131 degrees Fahrenheit. A </span>hair dryer<span> gets hot enough to burn skin, but not hot enough to complete serious tasks like striping paint and removing serious. By the way I got this from google.</span>
Answer:
Explanation:
Given that,
B(t) = B0 cos(ωt) • k
Radius r = a
Inner radius r' = a/2 and resistance R.
Current in the loop as a function of time I(t) =?
Magnetic flux is given as
Φ = BA
And the Area is given as
A = πr², where r = a/2
A = πa²/4
Then,
Φ = ¼ Bπa²
Φ(t) = ¼πa²Bo•Cos(ωt)
Then, the EMF is given as
ε(t) = -dΦ/dt
ε(t) = -¼πa²Bo • -ωSin(ωt)
ε(t) = ¼ωπa²Bo•Sin(ωt)
From ohms law,
ε = iR
Then, i = ε/R
I(t) = ¼ωπa²Bo•Sin(ωt) /R
This is the current induced in the loop.
Check attachment for better understanding
Answer:
166 666 666.7 years
Explanation:
We start the question by making the units uniform. We are told that the continents move at 3 cm/year = 0.03 m/year.
We are also told that the continents are now 5000 km = 5 000 000 m apart
So to calculate the time it took for them to be this far apart
t = distance/speed
t = 5 000 000 m/(0.03 m/year) = 166 666 666.7 years
The heat from your hand causes the ice molecules to heat up and become more active. This lowers the stability of the ice cube compound causing it to melt.