1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vladimir79 [104]
2 years ago
13

If a volume of air is warmed, it expands and tends to

Physics
1 answer:
Butoxors [25]2 years ago
7 0

if a volume of air is warmed it expands due to increased translational kinetic energy as it expands it will start to cool.

<h3>When does temperature increase volume?</h3>

We can then conclude that at constant pressure, temperature and volume are directly proportional: temperature increases, volume increases; decrease temperature, decrease volume.

In this case, the higher the temperature, the greater the kinetic energy that acts on the molecules of this gas, so when the gas expands, these molecules find more space and collide less, which will cause the gas to cool.

See more about volume at brainly.com/question/1578538

#SPJ12

You might be interested in
9. A 12 v battery is connected to four 5 ohm light bulbs. What is the equivalent
vlabodo [156]
20 ohms 5 ohms
12volts
7 0
2 years ago
A little girl is going on the merry-go-round for the first time, and wants her 50kg mother to stand near to her on the ride 2.1m
aliya0001 [1]
Angular momemtum : mass * tangential speed * distance to the center = 50*2.1*3.6=37800 J.s
3 0
3 years ago
An object of irregular shape has a characteristic length of L = 0.5 m and is maintained at a uniform surface temperature of Ts =
goblinko [34]

Answer:

The value of the average convection coefficient is 20 W/Km².

Explanation:

Given that,

For first object,

Characteristic length = 0.5 m

Surface temperature = 400 K

Atmospheric temperature = 300 K

Velocity = 25 m/s

Air velocity = 5 m/s

Characteristic length of second object = 2.5 m

We have same shape and density of both objects so the reynold number will be same,

We need to calculate the value of the average convection coefficient

Using formula of  reynold number for both objects

R_{1}=R_{2}

\dfrac{u_{1}L_{1}}{\eta_{1}}=\dfrac{u_{2}L_{2}}{\eta_{2}}

\dfrac{h_{1}L_{1}}{k_{1}}=\dfrac{h_{2}L_{2}}{k_{2}}

Here, k_{1}=k_{2}

h_{2}=h_{1}\times\dfrac{L_{1}}{L_{2}}

h_{2}=\dfrac{q}{T_{2}-T_{1}}\times\dfrac{L_{1}}{L_{2}}

Put the value into the formula

h_{2}=\dfrac{10000}{400-300}\times\dfrac{0.5}{2.5}

h_{2}=20\ W/Km^2

Hence, The value of the average convection coefficient is 20 W/Km².

7 0
3 years ago
When making maps of the large-scale universe, astronomers estimate distances to the vast majority of galaxies by using:
Vesnalui [34]

Answer:

<em>The comoving distance and the proper distance scale</em>

<em></em>

Explanation:

The comoving distance scale removes the effects of the expansion of the universe, which leaves us with a distance that does not change in time due to the expansion of space (since space is constantly expanding). The comoving distance and proper distance are defined to be equal at the present time; therefore, the ratio of proper distance to comoving distance now is 1. The scale factor is sometimes not equal to 1. The distance between masses in the universe may change due to other, local factors like the motion of a galaxy within a cluster.  Finally, we note that the expansion of the Universe results in the proper distance changing, but the comoving distance is unchanged by an expanding universe.

4 0
3 years ago
Can you explain that gravity pulls us to the Earth &amp; can you calculate weight from masses on both on Earth and other planets
schepotkina [342]
I don't actually understand what your question is, but I'll dance around the subject
for a while, and hope that you get something out of it.

-- The effect of gravity is:  There's a <em>pair</em> of forces, <em>in both directions</em>, between
every two masses.

-- The strength of the force depends on the <em>product</em> of the masses, so it doesn't matter whether there's a big one and a small one, or whether they're nearly equal. 
It's the product that counts.  Bigger product ==> stronger force, in direct proportion.

-- The strength of the forces also depends on the distance between the objects' centers.  More distance => weaker force.  Actually, (more distance)² ==> weaker force.

-- The forces are <em>equal in both directions</em>.  Your weight on Earth is exactly equal to
the Earth's weight on you.  You can prove that.  Turn your bathroom scale face down
and stand on it.  Now it's measuring the force that attracts the Earth toward you. 
If you put a little mirror down under the numbers, you'll see that it's the same as
the force that attracts you toward the Earth when the scale is right-side-up.

-- When you (or a ball) are up on the roof and step off, the force of gravity that pulls
you (or the ball) toward the Earth causes you (or the ball) to accelerate (fall) toward the Earth. 
Also, the force that attracts the Earth toward you (or the ball) causes the Earth to accelerate (fall) toward you (or the ball).
The forces are equal.  But since the Earth has more mass than you have, you accelerate toward the Earth faster than the Earth accelerates toward you.

--  This works exactly the same for every pair of masses in the universe.  Gravity
is everywhere.  You can't turn it off, and you can't shield anything from it.

-- Sometimes you'll hear about some mysterious way to "defy gravity".  It's not possible to 'defy' gravity, but since we know that it's there, we can work with it.
If we want to move something in the opposite direction from where gravity is pulling it, all we need to do is provide a force in that direction that's stronger than the force of gravity.
I know that sounds complicated, so here are a few examples of how we do it:
-- use arm-muscle force to pick a book UP off the table
-- use leg-muscle force to move your whole body UP the stairs
-- use buoyant force to LIFT a helium balloon or a hot-air balloon 
-- use the force of air resistance to LIFT an airplane.

-- The weight of 1 kilogram of mass on or near the Earth is 9.8 newtons.  (That's
about 2.205 pounds).  The same kilogram of mass has different weights on other planets. Wherever it is, we only know one of the masses ... the kilogram.  In order
to figure out what it weighs there, we need to know the mass of the planet, and
the distance between the kilogram and the center of the planet.

I hope I told you something that you were actually looking for.
7 0
3 years ago
Other questions:
  • A police car is at rest parallel to the highway and measures the speed of cars. It sends the signal with a frequency of 1200 Hz,
    15·1 answer
  • I need to explain how objects can have the same volume but different mass. Help??
    13·1 answer
  • A stream of warm air with a dry-bulb temperature of 36°C and a wet-bulb temperature of 30°C is mixed adiabatically with a stream
    6·1 answer
  • According to Einsteins explanation, what causes gravitation?
    13·1 answer
  • If you adjusted the frequency to be lower than the resonant frequency, would the voltage have been leading ahead of or lagging b
    14·1 answer
  • Two cars go around a banked curve at the proper speed for the banking angle. One car has tires with excellent traction, while th
    12·1 answer
  • In a closed system that has 45 J of mechanical energy, the gravitational
    9·2 answers
  • You are writing a report about space travel. Where would be the best place to find information? (2 points)
    10·2 answers
  • Explain why thermal and electrical conductivity is so high with copper.
    14·1 answer
  • Many adventures like to go rafting on the Colorado River through Grand Canyon National Park. There are many locations where the
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!