Consider, please, this solution:
The final heat is:
Q=Q₁+Q₂+Q₃≈726.116 kJ
All the details are in the attachment.
Answer:
??????????????????????????????????????????????????????????????????
Explanation:
?????????????????????????????????????????????????
The missing part of the incomplete question is given below:
Which important step of scientific design is Shameka conducting?
repetition
replication
verification of results
using controlled variables
Answer:
Verification of results
Explanation:
The way toward gathering five examples of water from various sources is conveyed to confirm the outcome. By gathering water from five distinct areas of a similar source the analyst can genuinely find out the nature of the water in her region of remain.
On the off chance that after examples are tried it is found the water isn't sound, the outcomes would be acknowledged as it has been appropriately checked and a proper move would be made.
Thus, the correct answer is - verification of results
Answer:
Explanation:
Theorem of Binomial Distribution will apply here.
n = 29 , p = .67 , q = 0.33
mean = np = 29 x .67 = 19.43
Standard Deviation = √npq
= √29 x .67 x .33
= √6.4
= 2.53
=
The magnitude of the downward acceleration of the hollow cylinder is 6m/s^2.
Z = I α
T.R =1/2 M (
+
)α
T.R = 1/2M 5
/4 α
T = 5Ma/8
Mg - T = Ma
Mg - 5Ma/8 = Ma
Mg= 5Ma/8 + Ma = 13Ma / 8
acceleration = 8g/13 = 6 m/s^2
The rate at which an object's velocity with respect to time changes is called its acceleration. The direction of the net force imposed on an item determines its acceleration in relation to that force. According to Newton's Second Law, the magnitude of an object's acceleration is the result of two factors working together
The size of the net balance of all external forces acting on that item is directly proportional to the magnitude of this net resultant force; the magnitude of that object's mass, depending on the materials from which it is built, is inversely related to its mass.
Learn more about acceleration here:
brainly.com/question/2303856
#SPJ4