<h2>MARK BRAINLIEST</h2>
For this assignment, you will develop several models that show how light waves and mechanical waves are reflected, absorbed, or transmitted through various materials. For each model, you will write a brief description of the interaction between the wave and the material. You will also compose two <u><em>typewritten</em></u> paragraphs. The first will compare and contrast light waves interacting with different materials. The second will explain why materials with certain properties are well suited for particular functions.
<h2><u>Background Information</u></h2>
A wave is any disturbance that carries energy from one place to another. There are two different types of waves: mechanical and electromagnetic. A mechanical wave carries energy through matter. Energy is transferred through vibrating particles of matter. Examples of mechanical waves include ocean waves, sound waves, and seismic waves. Like a mechanical wave, an electromagnetic wave can also carry energy through matter. However, unlike a mechanical wave, an electromagnetic wave does not need particles of matter to carry energy. Examples of electromagnetic waves include microwaves, visible light, X-rays, and radiation from the Sun.
If you have 12 atoms of hydrogen before a chemical reaction, the number of hydrogen atoms that will be present after the chemical reaction is 12 atoms.
The Law of Conservation of Mass (LOCOM) states that mass is neither created nor destroyed before and after any chemical reaction.
According to the Law of Conservation of Mass (LOCOM), a balanced chemical equation requires that the number of atoms on the reactant side must be equal to the number of atoms on the product side of any chemical reaction.
In this context, a chemical reaction having 12 atoms of hydrogen as reactants at the beginning, should also produce a total of 12 atoms of hydrogen as products at the end of the chemical reaction.
Ocean breezes are due to the convection method of heat transfer