Answer:
The motion is over-damped when λ^2 - w^2 > 0 or when
> 0.86
The motion is critically when λ^2 - w^2 = 0 or when
= 0.86
The motion is under-damped when λ^2 - w^2 < 0 or when
< 0.86
Explanation:
Using the newton second law
k is the spring constante
b positive damping constant
m mass attached
x(t) is the displacement from the equilibrium position

Converting units of weights in units of mass (equation of motion)

From hook's law we can calculate the spring constant k

If we put m and k into the DE, we get

Denoting the constants
2λ =
= 
λ = b/0.215

λ^2 - w^2 = 
This way,
The motion is over-damped when λ^2 - w^2 > 0 or when
> 0.86
The motion is critically when λ^2 - w^2 = 0 or when
= 0.86
The motion is under-damped when λ^2 - w^2 < 0 or when
< 0.86
Answer: 2.5 m/s and 6.25 m
Explanation:
u = 0
a = 0.5 m/s²
t = 5 s
v = u + at
= 0 + 0.5 × 5
= <u>2.5 m/s</u>
s = ut + 1/2 at²
= 1/2 × 2.5 × 5
=<u> 6.25 m</u>
What diagram? There isn’t one
We are asked in what manner can one make the motor run in reverse. One way to do so is to flip the magnet on the other side so that the opposite charge faces to the motor. The magnetic field induced by the magnet to the motor results to a reactive force opposite to the induced motion.