The correct definition of a fracture is break in the bone
<u>Explanation:</u>
When nay injury results in the breaking or causing any cracking in the bones of any parts then this will lead to fracture. When the injury caused is near the ligament or tissue in which the bone is connected or attached then it will lead to an avulsion fractures. Thus this will lead to the pulling of bone form the original position thereby leading more pain in the spot associated with the fracture.
Sports people are the victims of this type of fracture. Fracture may occur anywhere mostly legs,hands,ankle,hip and elbow. sometimes it may be in finger, shoulder,knee,etc. The main symptoms that are associated with fracture includes, selling, inability in moving the fractured part or pain associated when trying to move that part, Loss of the affected part's function,etc.
Answer:
The angular acceleration is zero
Explanation:
When an object is in rotational motion, it has a certain angular velocity, which is the rate of displacement of its angular position.
This angular velocity can change or remain constant - this is given by the angular acceleration, which is:

where
is the change in angular velocity
is the time elapsed
Therefore, the angular acceleration is the rate of change of angular velocity.
In this problem, the bicycle rotates at a constant angular velocity of

This means that the change in angular velocity is zero:

And so, that the angular acceleration is zero:

Answer:

Explanation:
<u>Conservation of Momentum
</u>
The total momentum of a system of two particles is

Where m1,m2,v1, and v2 are the respective masses and velocities of the particles at a given time. Then, the two particles collide and change their velocities to v1' and v2'. The final momentum is now

The momentum is conserved if no external forces are acting on the system, thus

Let's put some numbers in the problem and say



120=120
It means that when the particles collide, the first mass returns at 6 m/s and the second continues in the same direction at 28 m/s
Answer:
a) True. The number of photoelectrons is proportional to the amount (intensity) of the incident beam. From the expression above we see that threshold frequency cannot emit electrons.
b) λ = c / f
Therefore, as the wavelength increases, the frequency decreases and therefore the energy of the photoelectrons emitted,
c) threshold energy
h f =Ф
Explanation:
It's photoelectric effect was fully explained by Einstein by the expression
Knox = h f - fi
Where K is the kinetic energy of the photoelectrons, f the frequency of the incident radiation and fi the work function of the metal
a) True. The number of photoelectrons is proportional to the amount (intensity) of the incident beam. From the expression above we see that threshold frequency cannot emit electrons.
b) wavelength is related to frequency
λ = c / f
Therefore, as the wavelength increases, the frequency decreases and therefore the energy of the photoelectrons emitted, so there is a wavelength from which electrons cannot be removed from the metal.
c) As the work increases, more frequency radiation is needed to remove the electrons, because there is a threshold energy
h f =Ф