Answer:
= konstanta produk kelarutan
= kation dalam larutan berair
= anion dalam larutan berair
= konsentrasi relatif a dan b
DARI WEB
Divide the mass of the compound by the mass of the solvent and then multiply by 100 g to calculate the solubility in g/100g . Solubility of NaNO3=21.9g or NaNO3 x 100 g/ 25 g =87.6. Calculate the molar mass of the dissolved compound as the sum of mass of all atoms in the molecule.
Answer:- Third choice is correct, 17.6 moles
Solution:- The given balanced equation is:
Al_2(SO_4)_3+6KOH\rightarrow 2Al(OH)_3+3K_2SO_4
We are asked to calculate the moles of potassium hydroxide needed to completely react with 2.94 moles of aluminium sulfate.
From the balanced equation, there is 1:6 mol ratio between aluminium sulfate and potassium hydroxide.
It is a simple mole to mole conversion problem. We solve it using dimensional set up as:
2.94molAl_2(SO_4)_3(\frac{6molKOH}{1molAl_2(SO_4)_3})
= 17.6 mol KOH
So, Third choice is correct, 17.6 moles of potassium hydroxide are required to react with 2.94 moles of aluminium sulfate.
Since water is already at 100<span>°C all the energy is used to evaporate it.
Now we can calculate how many </span>mols of water are evaporated with 820kJ.

We calculated that we got 20 mols of water evaporated. Now, all we have to do is find how many grams is a mol of water. Molar mass of water is <span>20.16 g/mol.
</span>The final answer is:
Electric and magnetic fields do not affect xrays as they only affect charged particles and xrays have no charge
hope that helps
D, democritus is the answer i got