1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksenya-84 [330]
3 years ago
15

You wish to measure the iron content of the well water on the new property you are about to buy. You prepare a reference standar

d Fe3 solution with a concentration of 6.35 Ă— 10-4 M. You treat 10.0 mL of this reference with HNO3 and excess KSCN to form a red complex, and dilute the reference to 55.0 mL. The diluted reference is placed in a cell with a 1.00-cm light path. You then take 35.0 mL of the well water, treat with HNO3 and excess KSCN, and dilute to 100.0 mL. This diluted sample is placed in a variable pathlength cell. The absorbance of the reference and the sample solutions match when the pathlength is 4.40 cm. What is the concentration of iron in the well water? For each solution, the zero is set with a blank.
Chemistry
1 answer:
torisob [31]3 years ago
7 0

Based on Beer-Lambert's Law,

A = εcl ------(1)

where A = absorbance

ε = molar absorptivity

c = concentration

l = path length

Step 1: Calculate the concentration of the diluted Fe3+ standard

Use:

V1M1 = V2M2

M2 = V1M1/V2 = 10 ml*6.35*10⁻⁴M/55 ml = 1.154*10⁻⁴ M

Step 2 : Calculate the concentration of the sample solution

Based on equation (1) we have:

A(Fe3+) = ε(1.154*10⁻⁴)(1)

A(sample) = ε(C)(4.4)

It is given that the absorbances match under the given path length conditions, i.e.

ε(1.154*10⁻⁴)(1) = ε(C)(4.4)

C = 0.262*10⁻⁴ M

This is the concentration of Fe3+ in 100 ml of well water sample

Step 3: Calculate the concentration of Fe3+ in the original sample

Use V1M1 = V2M2

M1 = V2M2/V1 = 100 ml * 0.262*10⁻⁴ M/35 ml = 7.49*10⁻⁵M

Ans: Concentration of F3+ in the well water sample is 7.49*10⁻⁵M


You might be interested in
A tetraphenyl phosphonium chloride (TPPCl) powder (FW=342.39) is 94.0 percent pure. How many grams are needed to prepare 0.45 L
slega [8]

Answer:

5.41 g

Explanation:

Considering:

Molarity=\frac{Moles\ of\ solute}{Volume\ of\ the\ solution}

Or,

Moles =Molarity \times {Volume\ of\ the\ solution}

Given :

For tetraphenyl phosphonium chloride :

Molarity = 33.0 mM = 0.033 M (As, 1 mM = 0.001 M)

Volume = 0.45 L

Thus, moles of tetraphenyl phosphonium chloride :

Moles=0.033 \times {0.45}\ moles

Moles of TPPCl = 0.01485 moles

Molar mass of TPPCl = 342.39 g/mol

The formula for the calculation of moles is shown below:

moles = \frac{Mass\ taken}{Molar\ mass}

Thus,

0.01485\ g= \frac{Mass}{342.39\ g/mol}

Mass of TPPCl = 5.0845 g

Also,

TPPCl is 94.0 % pure.

It means that 94.0 g is present in 100 g of powder

5.0845 g is present in 5.41 g of the powder.

<u>Answer -  5.41 g</u>

5 0
3 years ago
True or false. (Pls help)
grigory [225]
I believe they’re both true.
5 0
3 years ago
Read 2 more answers
(4 points) The following lead compound for a pharmaceutical drug contains a rotatable bond. Using the principles of rigidificati
masya89 [10]

Answer:

Explanation:

The solution has been attached

3 0
3 years ago
Determine the reducing agent in the following reaction. Explain your answer. 2 Li(s) + Fe(C2H3O2)2(aq) → 2 LiC2H3O2(aq) + Fe(s)
Brilliant_brown [7]

The reducing agent in the reaction 2Li(s) + Fe(CH₃COO)₂(aq) → 2LiCH₃COO(aq) + Fe(s) is lithium (Li).

The general reaction is:

2Li(s) + Fe(CH₃COO)₂(aq) → 2LiCH₃COO(aq) + Fe(s)   (1)

We can write the above reaction in <u>two reactions</u>, one for oxidation and the other for reduction:

  • Oxidation reaction

Li⁰(s) → Li⁺(aq) + e⁻   (2)

  • Reduction reaction

Fe²⁺(aq) + 2e⁻ → Fe⁰(s)    (3)

We can see that Li⁰ is oxidizing to Li⁺ (by <u>losing</u> one electron) in the lithium acetate (<em>reaction 2</em>) and that Fe²⁺ in iron(II) acetate is reducing to Fe⁰ (by <u>gaining</u> two <em>electrons</em>) (<em>reaction 3</em>).  

We must remember that the reducing agent is the one that will be oxidized by <u>reducing another element</u> and that the oxidizing agent is the one that will be reduced by <u>oxidizing another species</u>.

In reaction (1), the<em> reducing agent</em> is <em>Li</em> (it is oxidizing to Li⁺), and the <em>oxidizing agent </em>is<em> Fe(CH₃COO)₂</em> (it is reducing to Fe⁰).  

Therefore, the reducing agent in reaction (1) is lithium (Li).  

 

Learn more here:

  • brainly.com/question/10547418?referrer=searchResults
  • brainly.com/question/14096111?referrer=searchResults

I hope it helps you!

3 0
2 years ago
Why do oxygen and hydrogen connect (attach) underwater? ​
Usimov [2.4K]
The slight positive charges on the hydrogen atoms in water molecules attract the slight negative charges on the oxygen atoms of the other water molecules
7 0
3 years ago
Other questions:
  • How many kilograms are in 6.983 moles of baking soda (NaCHO3)?
    14·1 answer
  • Please help with that problem <br> Important İ have quiz tomorrow
    7·1 answer
  • An alloy is made up of more than one type of what?
    11·1 answer
  • The sun has more gravity than the planets in our solar system because the sun is?
    7·1 answer
  • What is the basic SI unit for measuring volume
    12·1 answer
  • Who wants to help me ???
    13·1 answer
  • How would I solve this kind of equation ?3.346 x 10^6km to m
    14·1 answer
  • What is the amount of moles in 67 g of C​
    9·1 answer
  • If more solvent is added to a solution:
    12·1 answer
  • Need help with this can some please help
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!