<u>Given:</u>
Time taken by the electromagnetic radiation, t = 33 fs
<u>To determine:</u>
The distance (d) travelled
<u>Explanation:</u>
Time taken = 33 fs (femtosecond)
1 fs = 10⁻¹⁵ s
Thus t = 33 *10⁻¹⁵ s
Speed of electromagnetic radiation = 3*10⁸ m/s
Distance = Speed * Time = 3*10⁸ ms-1 * 33*10⁻¹⁵ s = 99*10⁻⁷ m
Ans: distance traveled = 9.9*10⁻⁶ m
Hydrogen peroxide is one of the most common bleaching agents. It is the primary bleaching agent in the textile industry, and is also used in pulp, paper, and home laundry applications.
bleaching agent is a material that lightens or whitens a substrate through chemical reaction. The bleaching reactions usually involve oxidative or reductive processes that degrade color systems. These processes may involve the destruction or modification of chromophoric groups in the substrate as well as the degradation of color bodies into smaller, more soluble units that are more easily removed in the bleaching process. The most common bleaching agents generally fall into two categories: chlorine and its related compounds (such as sodium hypochlorite) and the peroxygen bleaching agents, such as hydrogen peroxide and sodium perborate. Reducing bleaches represent another category. Enzymes are a new category of bleaching agents. They are used for textile, paper, and pulp bleaching as well as for home laundering. Chlorine‐containing bleaching agents are the most cost‐effective bleaching agents known. They are also effective disinfectants, and water disinfection is often the largest use of many chlorine‐containing bleaching agents. They may be divided into four classes: chlorine, hypochlorites, N‐chloro compounds, and chlorine dioxide. Except to bleach wood pulp and flour, chlorine itself is rarely used as a bleaching agent. The principal form of hypochlorite produced is sodium hypochlorite. Other hypochlorites include calcium hypochlorite and bleach liquor, bleaching powder and tropical bleach. The principal solid chlorine bleaching agents are the chlorinated isocyanurates, eg, sodium dichloroisocyanurate dihydrate. Other N‐chloro compounds include halogenated hydantoins, and sodium N‐chlorobenzenesulfonamide (chloramine B). Chlorine dioxide is a gas that is more hazardous than chlorine. Large amounts for pulp bleaching are made by several processes in which sodium chlorate is reduced with chloride, methanol, or sulfur dioxide in highly acidic solutions by complex reactions. Hydrogen peroxide is one of the most common bleaching agents. It is the primary bleaching agent in the textile industry, and is also used in pulp, paper, and home laundry applications. Hydrogen peroxide reacts with many compounds, such as borates, carbonates, pyrophosphates, sulfates, etc, to give peroxy compounds or peroxyhydrates. Peracids have superior cold water bleaching capability versus hydrogen peroxide because of the greater electrophilicity of the peracid peroxygen moiety. Lower wash temperatures and phosphate reductions or bans in detergent systems account for the recent utilization and vast literature of peracids in textile bleaching. The reducing agents generally used in bleaching include sulfur dioxide, sulfurous acid, bisulfites, sulfites, hydrosulfite (dithionites), sodium sulfoxylate formaldehyde, and sodium borohydride. These materials are used mainly in pulp and textile bleaching.
<span>Hind limbs will typically be stronger than forelimbs. For some animals this is because they are used for self-defense (a horse or donkey kicking, for example). Forelimbs are not going to be as strong and are often used for feeding oneself, and not intended to be as weight bearing in many mammals.</span>
1.35 mole of K₂SO₄ contain 2.7 moles of cation.
Cations are positive ions. They are the ions of metallic elements.
To obtain the answer to the question, we'll begin by calculating the number of mole of cations in 1 mole of K₂SO₄.
K₂SO₄ (aq) —> 2K⁺ (aq) + SO₄²¯ (aq)
<h3>Cation => K⁺</h3>
From the balanced equation above,
1 mole of K₂SO₄ contains 2 moles of K⁺ (i.e cation).
Finally, we shall determine the number of mole of cation in 1.35 mole of K₂SO₄. This can be obtained as follow:
1 mole of K₂SO₄ contains 2 moles of K⁺ (i.e cation).
Therefore, 1.35 mole of K₂SO₄ will contain = 1.35 × 2 = 2.7 moles of K⁺ (i.e cation).
Hence, we can conclude that 1.35 mole of K₂SO₄ contain 2.7 moles of cation
Learn more: brainly.com/question/24707125
Explanation:
The temperature of the molten iron remained constant at 2750°C because of the heat absorbed to effect the phase change and not to change the temperature.
The heat of vaporization is a latent or hidden heat absorbed by substances that causes a phase change from liquid to gas.
- In essence, the heat is used to break intermolecular bonds between the particles of the melted vat.
- If enough heat is no supplied the molten vat will not boil off and become vapor.
- In transitioning from liquid to gas, heat is absorbed by a body to effect the phase change.
- When the body acquires enough heat, the particles are able to break off and boil.
- At the 2750°C mark, this is what is happening.
learn more:
Specific heat brainly.com/question/7210400
#learnwithBrainly