Answer:
1: [H+] = 0.01 M
2: [H+] = 0.0001 M
3: [H+] = 0.0001 M
Explanation:
Step 1: data given
pH = -log[H+]
pH = pOH = 14
Step 2:
1. A solution with pH = 2.0
pH = 2
-log[H+] = 2.0
[H+] = 10^-2
[H+] = 0.01 M
2. A solution with pH = 4.0
pH = 4
-log[H+] = 4.0
[H+] = 10^-4
[H+] = 0.0001 M
3. A solution with pOH = 10.0
pH = = 14 - 10 = 4
pH = 4
-log[H+] = 4.0
[H+] = 10^-4
[H+] = 0.0001 M
It will sink in that glass of water.
as, it's density is more than density of water.
you might be known that the density of water is 1g/cm^2 and it's given that the density of the item is 2g/cm^2,
and
An object only floats in water if it's density is less than that of water so,
that item is going to sink.
Answer:
the second answer its science behind it
M=n(pie)/RT
n=osmotic pressure(1.2 atm)
M=molar of the solution
R=gas constant(0.0821)
T= temperature in kelvin 25+273
M=[1.2atm /(0.0821L atm/k mol x 298k)]=0.049mol L
M= moles of the solute/ litres of solution(250/1000)
0.049= y/0.25
moles of solute is therefore =0.01225mol
molar mass=33.29 g/0.01225mol=2.7 x10^3g/mol