Answer:
3.07 × 10⁻⁴
Explanation:
Step 1: Calculate the concentration of H⁺
We will use the definition of pH.
![pH = -log [H^{+} ]\\\[ [H^{+} ] = antilog -pH = antilog -2.37 = 4.27 \times 10^{-3} M](https://tex.z-dn.net/?f=pH%20%3D%20-log%20%5BH%5E%7B%2B%7D%20%5D%5C%5C%5C%5B%20%5BH%5E%7B%2B%7D%20%5D%20%3D%20antilog%20-pH%20%3D%20antilog%20-2.37%20%3D%204.27%20%5Ctimes%2010%5E%7B-3%7D%20M)
Step 2: Calculate the concentration of HY
5.22 × 10⁻³ mol of HY are dissolved in 0.088 L. The concentration of the acid (Ca) is:

Step 3: Calculate the acid dissociation constant (Ka)
We will use the following expression.
![Ka = \frac{[H^{+}]^{2} }{Ca} = \frac{(4.27 \times 10^{-3} )^{2} }{0.0593} = 3.07 \times 10^{-4}](https://tex.z-dn.net/?f=Ka%20%3D%20%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%5E%7B2%7D%20%7D%7BCa%7D%20%3D%20%5Cfrac%7B%284.27%20%5Ctimes%2010%5E%7B-3%7D%20%29%5E%7B2%7D%20%7D%7B0.0593%7D%20%3D%203.07%20%5Ctimes%2010%5E%7B-4%7D)
Answer: 1. (0.5 to 1)
2. (Fluorine)
3. (KNO3
4. (Polar covalent bonds share electrons unequally, while nonpolar covalent bonds share electrons equally.)
5. (Fe and S have a covalent bond, and S and O have covalent bonds, too.)
Explanation:
Ye, have great day.
Like charges repel eachother. neutrons serve as a buffer so that the protons dont push each other apart
Usually poorly, especially at room temperature for most of them. The gases do not conduct. Some that are marginally non metals (silicon germanium and graphite) conduct passably well but do not conduct as well as copper or silver.
Non metals do not have easily freed electrons and that is why they do not conduct electricity.