Answer: Equilibrium concentration of at is 4.538 M
Explanation:
Initial concentration of = 0.056 M
Initial concentration of = 4.60 M
The given balanced equilibrium reaction is,
Initial conc. 0.056 M 4.60 M 0 M 0 M
At eqm. conc. (0.056-x) M (4.60-2x) M (x) M (6x) M
The expression for equilibrium constant for this reaction will be,
Given : equilibrium concentration of =x = 0.031 M
Concentration of = (4.60-2x) M = =4.538 M
Thus equilibrium concentration of at is 4.538 M
The two liquids are different and so the melting points are different only because one represents an intermediate stage. It was a melting-point suppression effect, just like salt and ice, but it was much larger than anyone on the team had thought possible.
The chemical formula : 3HgBr₂(Mercury(II) bromide)
<h3>Further explanation</h3>
Given
The chemical formulas of Mercury and Bromine
Required
The appropriate chemical formula
Solution
A molecular formula is a formula that shows the number of atomic elements that make up a compound.
The number of molecules is determined by the coefficient in front of the compound
the number of atoms is determined by the subscript after the atom and the coefficient
Three molecules⇒ coefficient = 3
one atom of Mercury ⇒Hg
two atoms of Bromine ⇒ Br₂
The chemical formula : 3HgBr₂
<span>6.12<span>(<span>1024</span>)</span></span><span>=<span><span>(6.12)</span><span>(<span><span>1e</span>+24</span>)</span></span></span><span>=<span><span>6.12e</span>+24</span></span>
<span>
=
</span>
Answer:
Volume is directly proportional to absolute temperature.
Explanation: