<span>M(HCl) * </span><span>V(HCl) </span>= <span>M(NaOH) * </span><span>V(<span>NaO<span>H)
</span></span></span>
M(HCl) = 0.35
<span>V(HCl) = 45mL
</span>M(NaOH)= 0.35
now, solne for V(NaOH) by putting these values in the above equation.
M(HCl) * <span>V(HCl) </span>= <span>M(NaOH) * </span><span>V(NaOH)</span>
<span>0.35 * 45 = 0.35 * V(NaOH)</span>
<span>V(NaOH) = 45 mL</span>
Here, we use the mole as we would use any other collective number: a dozen eggs; a Bakers' dozen; a Botany Bay dozen.
Of course, the mole specifies a much larger quantity, and if I have a mole of stuff then I have
6.022
×
10
23
individual items of that stuff. We can also specify an equivalent mass, because we also know the mass of a mole of iron, and a mole of oxygen etc........The mole is thus the link between the macro world of grams and kilograms and litres, that which we can measure out in the lab, to the micro world of atoms, and molecules, that which we can perceive only indirectly.
Here we have the formula unit
F
e
2
(
S
O
4
)
3
. If there is a mole of formula units, there are necessarily 2 moles of iron atoms, 3 sulfate ions,.......etc.
Answer:
For finding frequency, we need to first find the period of the graph.
The period of a sinusoidal graph is the time interval in which it repeats its pattern.
In the graph, we can see, after
time, it repeats its pattern.
Hence the period of the graph is
.
Now we need to find its frequency 
The formula for frequency is 
This is the answer
i hope you pass the assignment
try your best!
Answer: Evaporation Condensation is used to seperate the parts of a mixture
Explanation: This is because it is the first order of the distilation process
Answer:
The value of Q must be less than that of K.
Explanation:
The difference of K and Q can be understood with the help of an example as follows
A ⇄ B
In this reaction A is converted into B but after some A is converted , forward reaction stops At this point , let equilibrium concentration of B be [B] and let equilibrium concentration of A be [A]
In this case ratio of [B] and [A] that is
K = [B] / [A] which is called equilibrium constant.
But if we measure the concentration of A and B ,before equilibrium is reached , then the ratio of the concentration of A and B will be called Q. As reaction continues concentration of A increases and concentration of B decreases. Hence Q tends to be equal to K.
Q = [B] / [A] . It is clear that Q < K before equilibrium.
If Q < K , reaction will proceed towards equilibrium or forward reaction will
proceed .