The question is incomplete, complete question is;
A solution of
is added dropwise to a solution that contains
of
and
and
.
What concentration of
is need to initiate precipitation? Neglect any volume changes during the addition.
value 
value 
What concentration of
is need to initiate precipitation of the first ion.
Answer:
Cadmium carbonate will precipitate out first.
Concentration of
is need to initiate precipitation of the cadmium (II) ion is
.
Explanation:
1) 
The expression of an solubility product of iron(II) carbonate :
![K_{sp}=[Fe^{2+}][CO_3^{2-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BFe%5E%7B2%2B%7D%5D%5BCO_3%5E%7B2-%7D%5D)
![2.10\times 10^{-11}=0.58\times 10^{-2} M\times [CO_3^{2-}]](https://tex.z-dn.net/?f=2.10%5Ctimes%2010%5E%7B-11%7D%3D0.58%5Ctimes%2010%5E%7B-2%7D%20M%5Ctimes%20%5BCO_3%5E%7B2-%7D%5D)
![[CO_3^{2-}]=\frac{2.10\times 10^{-11}}{1.15\times 10^{-2} M}](https://tex.z-dn.net/?f=%5BCO_3%5E%7B2-%7D%5D%3D%5Cfrac%7B2.10%5Ctimes%2010%5E%7B-11%7D%7D%7B1.15%5Ctimes%2010%5E%7B-2%7D%20M%7D)
![[CO_3^{2-}]=1.826\times 10^{-9}M](https://tex.z-dn.net/?f=%5BCO_3%5E%7B2-%7D%5D%3D1.826%5Ctimes%2010%5E%7B-9%7DM)
2) 
The expression of an solubility product of cadmium(II) carbonate :
![K_{sp}=[Cd^{2+}][CO_3^{2-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BCd%5E%7B2%2B%7D%5D%5BCO_3%5E%7B2-%7D%5D)
![1.80\times 10^{-14}=0.58\times 10^{-2} M\times [CO_3^{2-}]](https://tex.z-dn.net/?f=1.80%5Ctimes%2010%5E%7B-14%7D%3D0.58%5Ctimes%2010%5E%7B-2%7D%20M%5Ctimes%20%5BCO_3%5E%7B2-%7D%5D)
![[CO_3^{2-}]=\frac{1.80\times 10^{-14}}{0.58\times 10^{-2} M}](https://tex.z-dn.net/?f=%5BCO_3%5E%7B2-%7D%5D%3D%5Cfrac%7B1.80%5Ctimes%2010%5E%7B-14%7D%7D%7B0.58%5Ctimes%2010%5E%7B-2%7D%20M%7D)
![[CO_3^{2-}]=3.103\times 10^{-12} M](https://tex.z-dn.net/?f=%5BCO_3%5E%7B2-%7D%5D%3D3.103%5Ctimes%2010%5E%7B-12%7D%20M)
On comparing the concentrations of carbonate ions for both metallic ions, we can see that concentration to precipitate out the cadmium (II) carbonate from the solution is less than concentration to precipitate out the iron (II) carbonate from the solution.
So, cadmium carbonate will precipitate out first.
And the concentration of carbonate ions to start the precipitation of cadmium carbonate we will need concentration of carbonate ions greater than the
concentration.
PH of solution at 25ºC = 8.3
![[ H_3O^+] = 10 ^{-pH}](https://tex.z-dn.net/?f=%5B%20H_3O%5E%2B%5D%20%3D%2010%20%5E%7B-pH%7D%20)
![{H_3O^+] = 10 ^{-8.3}](https://tex.z-dn.net/?f=%7BH_3O%5E%2B%5D%20%3D%2010%20%5E%7B-8.3%7D)
![[H_3O^+] = 5.011*10^{-9} M](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%20%3D%205.011%2A10%5E%7B-9%7D%20%20M)
hope this helps!
Explanation:
To solve this question, we will use the Clayperon Equation:
P.V = n.R.T
where:
P = 101.28 kPa
1 atm = 101,325 Pa
x atm = 101,280 Pa
x = 1 atm
V = 37.058 L
n = we don't know
R = 0.082 atm.L/K.mol
T = -139.88 ºC = -139.88+273.15 = 133.27 K
1*37.058 = n*0.082*133.27
n = 0.29 moles
Answer: 0.29 moles
A single replacement reaction, sometimes called a single displacement reaction, is a reaction in which one element is substituted for another element in a compound. The starting materials are always pure elements, such as a pure zinc metal or hydrogen gas, plus an aqueous compound.
Answer:
the answer of the question is c