It matters to the aerodynamics of it because sometimes it's good to have the weight but only if it can take it.
Xmzmmsmkxkekxkkskfkxkskxkks
A. High intermolecular forces of attraction. If there are high intermolecular forces, the molecules will need large energies to escape into the liquid. The substance will nave a high melting point.
The other options are <em>incorrect </em>because they are <em>weak force</em>s. They would cause <em>low melting points</em>.
An oxygen gas is a diatomic molecule which means that each molecule is composed of 2 atoms. Its symbol is O2.
Each oxygen atom has a molar mass of 16 g/mol. The molar mass of oxygen gas is calculated below,
molar mass = 2 x (16 g/mol) = 32 g/mol
To determine the number of moles in 52.5 grams of oxygen, divide the given mass by the calculated molar mass.
n = 52.5 grams / (32 gram/ mol)
n = 1.64 moles
Thus, there are 1.64 moles of oxygen gas.
Answer:
See explanation
Explanation:
When either pan is heated, energy is transferred via conduction. Conduction is the process by which heat is transferred through a material, the average position of the particles remaining the same.
When the pans are heated, the particles in each pan vibrate faster and transfer this energy rapidly to neighboring particles.
The pan with a thicker base has more particles in it than the pan with lighter weight base. Note that, The rate of heat transfer is inversely proportional to the thickness of the material in question. Hence, the thicker the base, the more the number of particles present and the longer the time it takes for the food to cook.