Answer
A. It changes the rate, R
Explanation
When we change the concentration of the reactants in a chemical reaction, it affects the rate of reaction that happens in the process. Typically, the rate of reaction will decrease with time if the concentration of the reactants decreases because the reactants will be converted to products. Similarly, the rate of reaction will increase when the concentration of reactants are increased.
Answer:
2.47L
Explanation:
Using the combined gas law equation as follows:
P1V1/T1= P2V2/T2
Where;
P1 = initial pressure (mmHg)
P2 = final pressure (mmHg)
V1 = initial volume (L)
V2 = final volume (L)
T1 = initial temperature (K)
T2 = final temperature (K)
According to the information provided in this question;
P1 = 705mmHg
P2 = 760mmHg (STP)
V1 = 3.00L
V2 = ?
T1 = 35°C = 35 + 273 = 308K
T2 = 273K (STP)
Using P1V1/T1= P2V2/T2
705 × 3/308 = 760 × V2/273
2115/308 = 760V2/273
Cross multiply
308 × 760V2 = 2115 × 273
234,080V2 = 577,395
V2 = 577,395 ÷ 234,080
V2 = 2.47L
Answer:
the Rhyniognatha hirsti
Explanation:
at age 400 million years old
Answer:
A) involves changes in temperature
Explanation:
The figure is missing, but I assume that the region marked X represents the region in common between Gay-Lussac's law and Charle's Law.
Gay-Lussac's law states that:
"For an ideal gas kept at constant volume, the pressure of the gas is directly proportional to its absolute temperature"
Mathematically, it can be written as

where p is the pressure of the gas and T its absolute temperature.
Charle's Law states that:
"For an ideal gas kept at constant pressure, the volume of the gas is directly proportional to its absolute temperature"
Mathematically, it can be written as

where V is the volume of the gas and T its absolute temperature.
By looking at the two descriptions of the law, we see immediately that the property that they have in common is
A) involves changes in temperature
Since the temperature is NOT kept constant in the two laws.
They are used to pass food to the oral mouth at the center, and can attach to surfaces.