Answer:
the initial concentration of SCN- in the mixture is 0.00588 M
Explanation:
The computation of the initial concentration of the SCN^- in the mixture is as follows:
As we know that

As it is mentioned in the question that KSCN is present 10 mL of 0.05 M
So, the total milimoles of SCN^- is
= 10 × 0.05
= 0.5 m moles
The total volume in mixture is
= 45 + 10 + 30
= 85 mL
Now the initial concentration of the SCN^- is
= 0.5 ÷ 85
= 0.00588 M
hence, the initial concentration of SCN- in the mixture is 0.00588 M
Given :
A 250 ml beaker weighs 13.473 g .
The same beaker plus 2.2 ml of water weighs 15.346 g.
To Find :
How much does the 2.2 ml of water, alone, weigh .
Solution :
Now, mass of water is given by :

Therefore , mass of 2.2 ml of water alone is 1.873 g .
Hence , this is the required solution .
Answer:
C) 1 and 3
Explanation:
A period in the periodic table is a row of chemical elements. All elements in a row have the same number of electron shells. ... Arranged this way, groups of elements in the same column have similar chemical and physical properties, reflecting the periodic law.
Answer:
hope this helps :)
Explanation:
for the first one, you can look at the periodic table and look at the atomic number and it will show you how many protons there are giving you the answer because protons and electrons are equal in a pure element
a- carbon
b- neon
c- boron
d- oxygen
e- helium
f- hydrogen
g- lithium
h- beryllium
i- nitrogen
1- sulfur
2- S
3- 16
4- 32.066
5- 16
6- 16
7- 16.066
8- draw circles and put 16 dots like on the other page and in the middle put 16 nuetrons and electrons
9- 6 i think
<u>Answer:</u> The value of
is 0.136 and is reactant favored.
<u>Explanation:</u>
Equilibrium constant in terms of concentration is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
For the chemical reaction between carbon monoxide and hydrogen follows the equation:

The expression for the
is given as:
![K_{c}=\frac{[NH_3]^2}{[N_2][H_2]^3}](https://tex.z-dn.net/?f=K_%7Bc%7D%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5BH_2%5D%5E3%7D)
We are given:
![[NH_3]=0.25M](https://tex.z-dn.net/?f=%5BNH_3%5D%3D0.25M)
![[H_2]=0.75M](https://tex.z-dn.net/?f=%5BH_2%5D%3D0.75M)
![[N_2]=1.1M](https://tex.z-dn.net/?f=%5BN_2%5D%3D1.1M)
Putting values in above equation, we get:


There are 3 conditions:
- When
; the reaction is product favored. - When
; the reaction is reactant favored. - When
; the reaction is in equilibrium.
For the given reaction, the value of
is less than 1. Thus, the reaction is reactant favored.
Hence, the value of
is 0.136 and is reactant favored.