Answer:
13.91 m/s
Explanation:
First we need to find the acceleration:
Acceleration = Force/mass
Acceleration = 36.7N/7.41 kg
Acceleration = 4.95 m/s² (rounded to two decimal places)
Then we find the velocity:
Velocity = Acceleration * Time
Velocity = 4.95 m/s² * 2.81 s
Velocity = 13.91 m/s (rounded to two decimal places)
Answer:
I cant see the provided answer next to the options there is nothing
Explanation:
Answer:
420000N
Explanation:
Given parameters:
Mass of the train = 5.6 x 10⁵kg
Acceleration = 0.75m/s²
Unknown:
Resultant force = ?
Solution:
According to newton's second law, force is the product of mass and acceleration;
Force = mass x acceleration
Resultant force that acts on the train is given below;
Force = 5.6 x 10⁵kg x 0.75m/s² = 420000N
According to Newton second law of motion, the resultant force is directly proportional to the rate of change in momentum while maintaining other factors constant. Therefore, F = (mv-mu)/t where F is the resultant force , m is the mass of the object, v is the final velocity and u is the initial velocity.
Hence, Ft = mv-mu, but impulse is given by force multiplied by time, thus, impulse is equivalent to the change in momentum.
Impulse = Ft
= 325 × 2.2 sec
= 715 Ns
Explanation:
Given that,
Charge 1, 
Charge 2, 
Distance between charges, r = 0.0209 m
1. The electric force is given by :


F = -492.95 N
2. Distance between two identical charges, 
Electric force is given by :




Hence, this is the required solution.