Answer:
The answer to your question are A and C
Explanation:
Quantitative data are quantities, something that we get after measuring something.
A. Measuring the rate of gas production from a chemical. This example is a quantitative measure, because we are measuring the rate.
B. Describing the clarity of water in a sample If we are describing something, means that we are not measuring anything, so this is not a quantitative measure.
C. Calculating the energy released from an electrochemical reaction If we are not measuring but we are using the data somebody else got to calculate energy, them this is a quantitative data.
Answer:
vector of zero magnitude
Explanation:
The displacement is a vector magnitude, therefore, in addition to being a module, it has direction and sense.
In this case it moved 350 m and then returned the same 350 m, so the total displacement is zero.
If we draw the vector, one has a directional direction to the right and the other direction to the left, therefore when adding the two vectors gives a vector of zero magnitude
Answer:
the can's kinetic energy is 0.42 J
Explanation:
given information:
Mass, m = 460 g = 0.46 kg
diameter, d = 6 cm, so r = d/2 = 6/2 = 3 cm = 0.03 m
velocity, v = 1.1 m/s
the kinetic energy of the can is the total of kinetic energy of the translation and rotational.
KE =
I ω^2 + 
where
I =
and ω = 
thus,
KE =
(
)^2 + 
=
+ 
=
+ 
= 
=
= 0.42 J
Answer:
39.240 W
Explanation:
Let's start by calculating the work done by the engine. We can assume that it is the same work done by the weight of the object to bring it from 40m to the surface: as much energy it takes to bring it up, the same ammount it takes to bring it down. Said work is 
At this point we can simply apply the definition of power, that is
, to get the power of the engine is 