Answer:
if we measure the change in height of the gas within the had and obtain a straight line in relation to the depth we can conclude that the air complies with Boye's law.
Explanation:
The air in the tube can be considered an ideal gas,
P V = nR T
In that case we have the tube in the air where the pressure is P1 = P_atm, then we introduce the tube to the water to a depth H
For pressure the open end of the tube is
P₂ = P_atm + ρ g H
Let's write the gas equation for the colon
P₁ V₁ = P₂ V₂
P_atm V₁ = (P_atm + ρ g H) V₂
V₂ = V₁ P_atm / (P_atm + ρ g h)
If the air obeys Boyle's law e; volume within the had must decrease due to the increase in pressure, if we measure the change in height of the gas within the had and obtain a straight line in relation to the depth we can conclude that the air complies with Boye's law.
The main assumption is that the temperature during the experiment does not change
Answer:
The kilogram (kg) is defined by taking the fixed numerical value of the Planck constant h to be 6.62607015 ×10−34 when expressed in the unit J s, which is equal to kg m2 s−1, where the meter and the second are defined in terms of c and ∆νCs.
Answer:
Explanation:Capillary action is the ability of a liquid to flow in narrow spaces without the assistance of, ... This article is about the physical phenomenon. ... If the diameter of the tube is sufficiently small, then the combination of surface tension (which is caused by cohesion ... They derived the Young–Laplace equation of capillary action.
Answer:
V₁ = √ (gy / 3)
Explanation:
For this exercise we will use the concepts of mechanical energy, for which we define energy n the initial point and the point of average height and / 2
Starting point
Em₀ = U₁ + U₂
Em₀ = m₁ g y₁ + m₂ g y₂
Let's place the reference system at the point where the mass m1 is
y₁ = 0
y₂ = y
Em₀ = m₂ g y = 2 m₁ g y
End point, at height yf = y / 2
= K₁ + U₁ + K₂ + U₂
= ½ m₁ v₁² + ½ m₂ v₂² + m₁ g
+ m₂ g 
Since the masses are joined by a rope, they must have the same speed
= ½ (m₁ + m₂) v₁² + (m₁ + m₂) g 
= ½ (m₁ + 2m₁) v₁² + (m₁ + 2m₁) g 
How energy is conserved
Em₀ = 
2 m₁ g y = ½ (m₁ + 2m₁) v₁² + (m₁ + 2m₁) g 
2 m₁ g y = ½ (3m₁) v₁² + (3m₁) g y / 2
3/2 v₁² = 2 g y -3/2 g y
3/2 v₁² = ½ g y
V₁ = √ (gy / 3)