Weight on the Moon = 291 N.
W = g · m, where m stays for the mass and on the Moon g = 1.67 m/s²
291 N = 1.67 m/s² · m
m = 291 kg m / s² : 1.67 m/s²
m = 174.25 kg
Weight on Earth = 9.81 m/s² · 174.25 kg = 1,709.4 N
Answer:
The weight of an astronaut on Earth is 1,709.4 N.
<span>The SLOPE of a position-time graph represents an object’s SPEED.
It's not possible to tell the object's velocity from the graph, because
the graph doesn't show anything about what direction the object is
moving, and you need to know the direction in order to know the velocity. </span>
<h2>
Answer:</h2>
C.
<h2>
Explanation:</h2>
This is what we call a permanent magnet. By the way, the magnetic phenomena were first observed about 2500 years ago near the ancient city of Magnesia, what is today Manisa, located in western Turkey, when people saw fragments of magnetized iron. So <em>what happens if you cut a magnet in half? </em>Well, a magnet has two ends, the first one is called a north pole or N pole while the other end is a south pole or S pole, so if you break a bar magnet, each piece has a north and south pole, no matter the size of each new bar although the smaller the piece, the weaker its magnetism. This is true because unlike electric charges, you always find magnetic poles in pairs, that is, ¡they can't be isolated! The option is C. because in the great bar the north pole is to the left while the south pole is to right.
I think the right answer would be objects pull because gravitational pull is when an object with more mass than an other object would pull the small mass object