1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liq [111]
3 years ago
5

Surface currents are driven by _____. wind density salinity temperature

Physics
2 answers:
sweet-ann [11.9K]3 years ago
7 0
<span>The question says, what drives surface current. The correct option is A, that is wind. There are two different current system in the ocean, they are deep circulation and surface circulation. Surface current is majorly driven by the wind. The wind is capable of moving the top 400 meters of the ocean, thereby creating ocean surface current. The pattern of the surface current is determined by the direction of the wind, forces from the earth rotation and the position of the landform that interact with the current.</span>
Gnesinka [82]3 years ago
3 0
Surface currents are driven by wind.
You might be interested in
A 60 g ball of clay is thrown horizontally at 40 m/s toward a 1.5 kg block sitting at rest on a frictionless surface. the clay h
Bingel [31]
The solution for this problem is:
Let u denote speed. 

Equating momentum before and after collision: 
= 0.060 * 40 = (1.5 + 0.060) u 
= 2.4 = 1.56 u
= 2.4 / 1.56 = 1.56 u / 1.56
= 1.6 m / s is the answer for this question. This is the speed after the collision.
7 0
3 years ago
on a very muddy football field, a 120 kg linebacker tackles an 75 kg halfback. immediately before the collision, the linebacker
DIA [1.3K]
<u>Momentum</u> 
- a vector quantity; has both magnitude and direction
- has the same direction as object's velocity
- can be represented by components x & y.

Find linebacker momentum given m₁ = 120kg, v₁ = 8.6 m/s north
P₁ = m₁v₁
P₁ = (120)(8.6)
[ P₁ = 1032 kg·m/s ] = y-component, linebacker momentum

Find halfback momentum given m₂ = 75kg, v₂ = 7.4 m/s east
P₂ = m₂v₂
P₂ = (75)(7.4)
[ P₂ = 555 kg·m/s ] = x-component, halfback momentum

Find total momentum using x and y components.
P = √(P₁)² + (P₂)²
P = √(1032)² + (555)²
[[ P = 1171.77 kg·m/s ]] = magnitude 

!! Finally, to find the magnitude of velocity, take the divide magnitude of momentum by the total mass of the players.
P = mv
P = (m₁ + m₂)v
1171.77 = (120 + 75)v      <em>[solve for v]</em>
<em />v = 1171.77/195
v = 6.0091 ≈ 6.0 m/s

If asked to find direction, take inverse tan of x and y components.
tanθ = (y/x)
θ = tan⁻¹(1032/555)
[ θ = 61.73° north of east. ]

The magnitude of the velocity at which the two players move together immediately after the collision is approximately 6.0 m/s.
6 0
3 years ago
A 500 kg block is attached to a horizontal spring that is at its equilibrium length, and whose force constant is 30 N/m. The blo
m_a_m_a [10]

Answer:

x = 0.396 m

Explanation:

The best way to solve this problem is to divide it into two parts: one for the clash of the putty with the block and another when the system (putty + block) compresses it is   spring

Data the putty has a mass m1 and velocity vo1, the block has a mass m2 .  t's start using the moment to find the system speed.

Let's form a system consisting of putty and block; For this system the forces during the crash are internal and the moment is preserved. Let's write the moment before the crash

    p₀ = m1 v₀₁

Moment after shock

    p_{f} = (m1 + m2) v_{f}

   p₀ = p_{f}

   m1 v₀₁ = (m1 + m2) v_{f}

  v_{f} = v₀₁ m1 / (m1 + m2)

   v_{f}= 4.4 600 / (600 + 500)

  v_{f} = 2.4 m / s

With this speed the putty + block system compresses the spring, let's use energy conservation for this second part, write the mechanical energy before and after compressing the spring

Before compressing the spring

   Em₀ = K = ½ (m1 + m2) v_{f}²

After compressing the spring

   E_{mf} = Ke = ½ k x²

As there is no rubbing the energy is conserved

   Em₀ = E_{mf}

   ½ (m1 + m2) v_{f}² = = ½ k x²

   x = v_{f} √ (k / (m1 + m2))

   x = 2.4 √ (11/3000)

   x = 0.396 m

7 0
3 years ago
A mass hanging from a spring is set in motion and its ensuing velocity is given by v (t )equals 2 pi cosine pi t for tgreater th
lianna [129]

Answer:

2(maximum), -2(minimum), -2(maximum).

Explanation:

V(t)= 2πcos πt--------------------------------------------------------------------------------(1).

Therefore, there is a need to integrate v(t) to get S(t).

S(t)= 2×sinπt + C ------------------------------------------------------------------------------(2).

Applying the condition given, we have s(0)= 0.

S(0)= 2sin ×π(0) + C.

Which means that; 0+C= 0. That is; C=0.

S(t)= 2 sin πt.

The mass moves to its highest positions at time,t=half(1/2=.5) and time,t=2.5.

Take note that;  sin(π/2) = sin(5π/2) = 1 .

Also, the mass moves to its lowest position at time,t=(3/2); also, sin(3π/2) = -1.

Therefore, we have that 2 maximum; -2 minimum and -2 maximum.

7 0
3 years ago
Solids diffuse because the particles cannot move.
Nastasia [14]

Solids cannot diffuse.

4 0
3 years ago
Read 2 more answers
Other questions:
  • When an unbalanced force acts on an object,
    13·1 answer
  • Refer to Explorations in Literature for a complete version of this story. How does Lizabeth interact with Miss Lottie in "Marigo
    9·2 answers
  • Which statement best describes the process that produced the ending populations of moths
    11·2 answers
  • Identical 50 μC charges are fixed on an x axis at x = ±3.0 m. A particle of charge q = -15 μC is then released from rest at a po
    9·1 answer
  • An atom with a positive charge is an anion.<br> a. true<br> b. fals
    14·1 answer
  • Determine the location of the center of mass of a "L" whose thin vertical and horizontal members have the same length L and the
    12·1 answer
  • In which example would the most transfer of energy take place from Mechanical energy to Thermal (heat) energy?
    15·1 answer
  • What is the answer to the question ?
    11·1 answer
  • Theres no way i can walk this road alone.....
    9·1 answer
  • What is the definition of energy in scientific terms?.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!