Answer:
Part a)

Part b)

Part c)

Part d)

Part e)

Part f)

Explanation:
As we know that catapult is projected with speed 19.9 m/s
so here we have


similarly we have


Part a)
Horizontal displacement in 1.03 s



Part b)
Vertical direction we have
![y = v_y t - \frac{1]{2}gt^2](https://tex.z-dn.net/?f=y%20%3D%20v_y%20t%20-%20%5Cfrac%7B1%5D%7B2%7Dgt%5E2)


Part c)
Horizontal displacement in 1.71 s



Part d)
Vertical direction we have
![y = v_y t - \frac{1]{2}gt^2](https://tex.z-dn.net/?f=y%20%3D%20v_y%20t%20-%20%5Cfrac%7B1%5D%7B2%7Dgt%5E2)


Part e)
Horizontal displacement in 5.44 s



Part f)
Vertical direction we have
![y = v_y t - \frac{1]{2}gt^2](https://tex.z-dn.net/?f=y%20%3D%20v_y%20t%20-%20%5Cfrac%7B1%5D%7B2%7Dgt%5E2)


Answer:
A) 35 ft
B) 5 ft
C) Net displacement = distance covered by the dog to retrieve the stick - distance covered before the dog starts chewing the stick
Explanation:
A) Total distance covered by the dog = 20 + 15
= 35 ft
B) Since the other distance covered by the dog before chewing the stick, after the retrieval, was in an opposite direction to the initial direction, then;
total displacement of the dog = 20 - 15
= 5 ft
C) Net displacement = distance covered by the dog to retrieve the stick + distance covered before the dog starts chewing the stick
But, displacement involves a specified direction. The distance covered before the dog starts chewing the stick was in an opposite direction to the initial direction.
Thus,
Net displacement = distance covered by the dog to retrieve the stick - distance covered before the dog starts chewing the stick
Answer:
you calculate a specific type of run for example 100m and it takes 20 seconds to finish and calculate the time it takes them to finish
hope this helps
have a good day :)
Explanation:
Answer:
Probability of tunneling is 
Solution:
As per the question:
Velocity of the tennis ball, v = 120 mph = 54 m/s
Mass of the tennis ball, m = 100 g = 0.1 kg
Thickness of the tennis ball, t = 2.0 mm = 
Max velocity of the tennis ball,
= 89 m/s
Now,
The maximum kinetic energy of the tennis ball is given by:

Kinetic energy of the tennis ball, KE' = 
Now, the distance the ball can penetrate to is given by:


Thus



Now,
We can calculate the tunneling probability as:



Taking log on both the sides:

