When you ask for "joules per second", you're asking for "watts".
The rate of energy "transfer" is 'power'. In this case, the light bulb
transfers energy out of the electrical circuit and into the space
around it, in the form of light and heat radiation.
Electrical power = (voltage) x (current) =
(6 volts) x (0.5 ampere) =
3 watts = 3 joules per second.
Answer:
* The first thing we observe is that the frequency response does not change
* The current that circulates in the circuit decreases due to the new resistance at the resonance point,
Z = R + R₂
Explanation:
The impedance of a series circuit is
Z₀² = R² + (X_L-X_C) ²
when we place another resistor in series the initial resistance impedance changes to
Z² = (R + R₂) ² + (X_L - X_C) ²
let's analyze this expression
* The first thing we observe is that the frequency response does not change
* The current that circulates in the circuit decreases due to the new resistance at the resonance point,
Z = R + R₂
0.77 m/s2 directed 35° south of west
net force = (-17,-12)
net force = mass * acceleration
(-17,-12) = 27 * (x-acceleration,y-acceleration)
(x-acceleration,y-acceleration) = (-17/27,-12/27) = (-0.629629629..., -0.444...)
angle of acceleration = tan^-1 (-0.444.../-0.629629...) = 35.21759 degrees below negative x-axis.
magnitude of acceleration = sqrt((-0.629629...)^2 + (-0.444...)^2) = 0.77069 (5dp)
Guess I recommend doing that