In order to answer these questions, we need to know the charges on
the electron and proton, and then we need to know the electron's mass.
I'm beginning to get the creepy feeling that, in return for the generous
5 points, you also want me to go and look these up so I can use them
in calculations ... go and collect my own straw to make the bricks with,
as it were.
Ok, Rameses:
Elementary charge . . . . . 1.6 x 10⁻¹⁹ coulomb
negative on the electron
plussitive on the proton
Electron rest-mass . . . . . 9.11 x 10⁻³¹ kg
a). The force between two charges is
F = (9 x 10⁹) Q₁ Q₂ / R²
= (9 x 10⁹ m/farad) (-1.6 x 10⁻¹⁹C) (1.6 x 10⁻¹⁹C) / (5.35 x 10⁻¹¹m)²
= ( -2.304 x 10⁻²⁸) / (5.35 x 10⁻¹¹)²
= 8.05 x 10⁻⁸ Newton .
b). Centripetal acceleration =
v² / r .
A = (2.03 x 10⁶)² / (5.35 x 10⁻¹¹)
= 7.7 x 10²² m/s² .
That's an enormous acceleration ... about 7.85 x 10²¹ G's !
More than enough to cause the poor electron to lose its lunch.
It would be so easy to check this work of mine ...
First I calculated the force, then I calculated the centripetal acceleration.
I didn't use either answer to find the other one, and I didn't use " F = MA "
either.
I could just take the ' F ' that I found, and the 'A' that I found, and the
electron mass that I looked up, and mash the numbers together to see
whether F = M A .
I'm going to leave that step for you. Good luck !
Because of the build up of pressure. There is so much steam coming from such a compressed point, it’s coming out in force.
Now think of that same spot being closed, it only has one place to go but it can’t leave, so that pressure will build and build and then BOOM, it explodes.
In short, the answer is the pressure being released from a small point, and how that energy is released.
Lower resistivity means higher conductivity: among these materials, the best conductor is silver, therefore it must be the material with lowest resistivity among those. We can also have a look at the value of resistivity of the different materials listed in the problem, to check our answer. The resistivities of the materials are the following:
Wood:

Salt water:

Silver:

Lead:

<span>We see that the material with lowest resistivity among those is silver, therefore the correct answer is silver.</span>
Electricity is NOT a part of electromagnetic spectrum.
An electromagnetic spectrum contains electromagnetic radiations arranged according to frequencies and wavelength.
<h2>Further Explanation
</h2><h3>Electromagnetic waves </h3>
- Electromagnetic waves are types of waves that do not require a material medium for transmission.
- These waves are mostly transverse in nature, which means the direction of transmission is perpendicular to the direction of vibration of particles.
- They include, light waves, radio waves, x-rays, infra-red, etc.
<h3>Electromagnetic spectrum
</h3>
- An electromagnetic wave shows electromagnetic waves arranged according to frequencies and wavelength.
- Electromagnetic spectrum contains electromagnetic waves: Gamma rays, x-rays, Ultraviolet, Visible light, infra-red, microwaves, and radio waves.
- The electromagnetic spectrum is divided into various sections based on wavelength, with gamma rays having the shortest wavelength and radio waves having the longest wavelength.
- The part of the electromagnetic spectrum that we can see using our naked eyes is called the visible light spectrum.
- In order of frequency, the radio waves have the lowest frequency while gamma rays have the largest frequency.
<h3>General characteristics of electromagnetic waves </h3>
- They travel with the speed of light (3.0 x 10^8 m/s)
- They possess energy that is given by; E =hf, where h is the plank’s constant and f is the frequency.
- They are transverse in nature, and therefore, the wavelength is measured between successful crests or troughs.
- They can travel through vacuum
Keywords: Electromagnetic spectrum, electromagnetic waves.
<h3>Learn more about: </h3>
Level: High school
Subject: Physics
Topic: Electromagnetic spectrum