If two sources emit waves with the same wavelength and a constant phase difference ϕ, they are said to be coherent.
<h3>What is coherent source ?</h3>
- If the frequency and waveform of two wave sources are the same, they are coherent. Waves' optimal quality of coherence makes stationary interference possible.
- When the phase difference between two beams of light is constant, they are coherent; if the phase difference is random or changes, they are noncoherent.
- The concept of a superpositioning at the core of quantum physics and quantum computing is referred to as "quantum coherence." Quantum coherence specifically considers a scenario in which a wave property of an item is split in two and the two waves coherently interfere with one another.
- The interference visibility, which examines the size of the interference fringes in relation to the input waves, is an easy way to measure the degree of coherence; correlation functions provide a precise mathematical definition of the degree of coherence.
To learn more about coherent refer :
brainly.com/question/24768967
#SPJ4
Answer:
x = 1474.9 [m]
Explanation:
To solve this problem we must use Newton's second law, which tells us that the sum of forces must be equal to the product of mass by acceleration.
We must understand that when forces are applied on the body, they tend to slow the body down to stop it.
So as the body continues to move to the left, it is slowing down. Therefore we must calculate this deceleration value using Newton's second law. We must perform a sum of forces on the x-axis equal to the product of mass by acceleration. With leftward movement as negative and rightward forces as positive.
ΣF = m*a
![10 +12*sin(60)= - 6*a\\a = - 3.39[m/s^{2}]](https://tex.z-dn.net/?f=10%20%2B12%2Asin%2860%29%3D%20-%206%2Aa%5C%5Ca%20%3D%20-%203.39%5Bm%2Fs%5E%7B2%7D%5D)
Now using the following equation of kinematics, we can calculate the distance of the block, before stopping completely. The initial speed must be 100 [m/s].

where:
Vf = final velocity = 0 (the block stops)
Vo = initial velocity = 100 [m/s]
a = - 3.39 [m/s²]
x = displacement [m]
![0 = 100^{2}-2*3.39*x\\x=\frac{10000}{2*3.39}\\x=1474.9[m]](https://tex.z-dn.net/?f=0%20%3D%20100%5E%7B2%7D-2%2A3.39%2Ax%5C%5Cx%3D%5Cfrac%7B10000%7D%7B2%2A3.39%7D%5C%5Cx%3D1474.9%5Bm%5D)
First answer is Wave length
Answer:
(b) The electrons, because they have the smaller momentum and, hence, the larger de Broglie wavelength
Explanation:
de Broglie wavelength λ = h / m v
Since both electrons and protons have same velocity , momentum mv will be less for electrons because mass of electron is less .
for electron , momentum is less so . Therefore de Broglie wavelength λ will be more for electrons .
Amount of diffraction that is angle of diffraction is proportional to λ
Therefore electrons having greater de Broglie wavelength will show greater diffraction.
First put your turn signal on, next check for any ongoing traffic and wait until it is clear lastly start to drift into the lane you need to clear away from traffic