Answer:
H+(aq) + OH-(aq) → H2O(l)
Explanation:
Step 1: Data given
nitrious acid = HNO3
sodium hydroxide = NaOH
Step 2: The unbalance equation
HNO3(aq) + NaOH(aq) →NaNO3(aq) + H2O(l)
The net ionic equation, for which spectator ions are omitted - remember that spectator ions are those ions located on both sides of the equation - will , after canceling those spectator ions in both side (Ba^2+ and Br-), look like this:
H+(aq) + NO3-(aq) + Na+(aq) + OH-(aq) →Na+(aq) +NO3(aq) + H2O(l)
H+(aq) + OH-(aq) → H2O(l)
Following the Law of Conservation of Mass, you simply add the mass of both substances. Thus, 160 grams + 40 grams = 200 grams. So, even if initially, they are in liquid and solid form, they would still have the same mass even if they change phases, owing to that they are in a closed space.
<u>Answer:</u> The standard potential of the cell is 0.77 V
<u>Explanation:</u>
We know that:

The substance having highest positive
reduction potential will always get reduced and will undergo reduction reaction.
The half reaction follows:
<u>Oxidation half reaction:</u> 
<u>Reduction half reaction:</u>
( × 2)
To calculate the
of the reaction, we use the equation:

Substance getting oxidized always act as anode and the one getting reduced always act as cathode.
Putting values in above equation follows:

Hence, the standard potential of the cell is 0.77 V
Answer:
canmann
Explanation:
because it is setting for that only