<span>Let's </span>assume that water vapor has ideal gas
behavior. <span>
Then we can use ideal gas formula,
PV = nRT<span>
</span><span>Where, P is the pressure of the gas (Pa), V
is the volume of the gas (m³), n is the number
of moles of gas (mol), R is the universal gas constant ( 8.314 J mol</span></span>⁻¹ K⁻¹) and T is temperature in Kelvin.<span>
<span>
</span>P = 1 atm = 101325 Pa (standard pressure)
V = 13.97 L = 13.97 x 10</span>⁻³ m³<span>
n = ?
R = 8.314 J mol</span>⁻¹ K⁻¹<span>
T = 0 °C = 273 K (standard temperature)
<span>
By substitution,
</span>101325 Pa x 13.97x 10</span>⁻³
m³ = n x 8.314 J mol⁻¹ K⁻¹ x 273 K<span>
n = 0.624 mol
<span>
Hence, the moles of water vapor at STP is 0.624 mol.
According to the </span></span>Avogadro's constant, 1 mole of substance has 6.022 × 10²³ particles.
<span>
Hence, number of atoms in water vapor = 0.624 mol x </span>6.022 × 10²³ mol⁻¹
<span> = 3.758 x 10</span>²³<span>
</span>
Answer:
a) 90 kg
b) 68.4 kg
c) 0 kg/L
Explanation:
Mass balance:

w is the mass flow
m is the mass of salt

v is the volume flow
C is the concentration





![-[ln(2000L+3*L/min*t)-ln(2000L)]=ln(m)-ln(90kg)](https://tex.z-dn.net/?f=-%5Bln%282000L%2B3%2AL%2Fmin%2At%29-ln%282000L%29%5D%3Dln%28m%29-ln%2890kg%29)
![-ln[(2000L+3*L/min*t)/2000L]=ln(m/90kg)](https://tex.z-dn.net/?f=-ln%5B%282000L%2B3%2AL%2Fmin%2At%29%2F2000L%5D%3Dln%28m%2F90kg%29)
![m=90kg*[2000L/(2000L+3*L/min*t)]](https://tex.z-dn.net/?f=m%3D90kg%2A%5B2000L%2F%282000L%2B3%2AL%2Fmin%2At%29%5D)
a) Initially: t=0
![m=90kg*[2000L/(2000L+3*L/min*0)]=90kg](https://tex.z-dn.net/?f=m%3D90kg%2A%5B2000L%2F%282000L%2B3%2AL%2Fmin%2A0%29%5D%3D90kg)
b) t=210 min (3.5 hr)
![m=90kg*[2000L/(2000L+3*L/min*210min)]=68.4kg](https://tex.z-dn.net/?f=m%3D90kg%2A%5B2000L%2F%282000L%2B3%2AL%2Fmin%2A210min%29%5D%3D68.4kg)
c) If time trends to infinity the division trends to 0 and, therefore, m trends to 0. So, the concentration at infinit time is 0 kg/L.
The number of electrons it take to fill the mos formed from the combination of the 3s orbitals of two atoms simply is 14 electrons.
<h3>How electrons are distributed in the 3s orbitals.</h3>
The 3s orbital possess two different spherical nodes which is highly connected with the principal quantum number. In order words, it has 2 radial nodes. Also the shape of the 3s orbital is spherical in shape.
That being said, from the context of the above given task, the number of electrons which fill the mos formed from the combination of the 3s orbitals of two atoms is fourteen electrons.
However, the electron configuration of an atom simply is the arrangement of electrons in the electron shell or orbit of the atom of that element.
In conclusion, it can be deduced from above s orbital has a maximum of two electrons and this energy increases as the orbitals increases.
Read more on electron:
brainly.com/question/860094
#SPJ1