Answer:
From hot tea to the ice cube
From the warm coffee to my cold hands
From the hot sand to my feet
Explanation:
Heat always travels from a hot object to a colder object, until equilibrium is reached and the objects are at the same temperature.
Answer:
Explanation:
None of the statement is true for both chemical and nuclear reactions. In chemical reactions, mass is always conserved and the type of atoms are also conserved.
I am pretty sure that <span>If I were asked to compare matter in solid, liquid, and gaseous states, the statement which would best defined a gas is </span>highest energy, highest molecular motion, and least dense packaging of molecules. I choose this one because it's not sensible to <span>heat CO2 (in case of safety) and in the last option the amount of energy is not satisfying.
Hope it helps!</span>
Answer:
a) 7.0.
b) Nickel sulfate hepta hydrate.
c) 280.83 g/mol.
d) 44.9%.
Explanation:
<u><em>a) What is the formula of the hydrate?</em></u>
The mass of the hydrated sample (NiSO₄.xH₂O) = 5.0 g,
The mass of the anhydrous salt (NiSO₄) = 2.755 g,
The mass of water = 5.0 g - 2.755 g = 2.245 g.
∴ no. of moles of water = mass/molar mass = (2.245 g)/(18.0 g/mol) = 0.1247 mol.
∴ no. of moles of anhydrous salt (NiSO₄) = mass/molar mass = (2.755 g)/(154.75 g/mol) = 0.0178 mol.
∴ water of crystallization in the sample (x) = no. of moles of water/no. of moles of anhydrous salt (NiSO₄) = (0.1247 mol)/(0.0178 mol) = 7.0.
<u><em>b) What is the full chemical name for the hydrate?</em></u>
The name of the salt (NiSO₄.7H₂O) is Nickel sulfate hepta hydrate.
<u><em>c) What is the molar mass of the hydrate? </em></u>
(NiSO₄.7H₂O)
The molar mass = molar mass of NiSO₄ + 7(molar mass of H₂O) = (154.75 g/mol) + 7(18.0 g/mol) = 280.83 g/mol.
<em><u>d) What is the mass % of water in the hydrate?</u></em>
The mass % of water = (mass of water)/(mass of hydrated sample) x 100 = (2.245 g)/(5.0 g) x 100 = 44.9%.