Answer:
Final concentration of C at the end of the interval of 3s if its initial concentration was 3.0 M, is 3.06 M and if the initial concentration was 3.960 M, the concentration at the end of the interval is 4.02 M
Explanation:
4A + 3B ------> C + 2D
In the 3s interval, the rate of change of the reactant A is given as -0.08 M/s
The amount of A that has reacted at the end of 3 seconds will be
0.08 × 3 = 0.24 M
Assuming the volume of reacting vessel is constant, we can use number of moles and concentration in mol/L interchangeably in the stoichiometric balance.
From the chemical reaction,
4 moles of A gives 1 mole of C
0.24 M of reacted A will form (0.24 × 1)/4 M of C
Amount of C formed at the end of the 3s interval = 0.06 M
If the initial concentration of C was 3 M, the new concentration of C would be (3 + 0.06) = 3.06 M.
If the initial concentration of C was 3.96 M, the new concentration of C would be (3.96 + 0.06) = 4.02 M
Answer:
a. forces acting on the object
Answer:
I think copper
Explanation:
Material IACS % Conductivity
Silver 105
Copper 100
Gold 70
Aluminum 61
Nickel 22
Zinc 27
Brass 28
Iron 17
Tin 15
Phosphor Bronze 15
Lead 7
Nickel Aluminum Bronze 7
Steel 3 to 15
the table might help- your indian brother
If there was an inverse relationship between the temperature and the volume, our daily lives change because in high temperature things will contract.
<h3>What if there was an inverse relationship between the temperature and the volume?</h3>
If there was an inverse relationship between the temperature and the volume then with increasing temperature decrease occur in the volume of a substance. If this type of relationship is present in the world, the objects will contract when the temperature is high and expand when the temperature is low which make the solid materials expand at winter and contract at summer season.
So we can conclude that if there was an inverse relationship between the temperature and the volume, our daily lives change because in high temperature things will contract.
Learn more about temperature here: brainly.com/question/25677592
#SPJ1