Answer:
The degree of dissociation of acetic acid is 0.08448.
The pH of the solution is 3.72.
Explanation:
The 
The value of the dissociation constant = 
![pK_a=-\log[K_a]](https://tex.z-dn.net/?f=pK_a%3D-%5Clog%5BK_a%5D)

Initial concentration of the acetic acid = [HAc] =c = 0.00225
Degree of dissociation = α

Initially
c
At equilibrium ;
(c-cα) cα cα
The expression of dissociation constant is given as:
![K_a=\frac{[H^+][Ac^-]}{[HAc]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH%5E%2B%5D%5BAc%5E-%5D%7D%7B%5BHAc%5D%7D)



Solving for α:
α = 0.08448
The degree of dissociation of acetic acid is 0.08448.
![[H^+]=c\alpha = 0.00225M\times 0.08448=0.0001901 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dc%5Calpha%20%3D%200.00225M%5Ctimes%200.08448%3D0.0001901%20M)
The pH of the solution ;
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
![=-\log[0.0001901 M]=3.72](https://tex.z-dn.net/?f=%3D-%5Clog%5B0.0001901%20M%5D%3D3.72)
Answer:
= 97.44 Liters at S.T.P
Explanation:
The reaction between Iron (iii) oxide and Carbon monoxide is given by the equation;
Fe2O3(s)+ 3CO(g) → 3CO2(g) + 2Fe(s)
From the reaction when the reactants react, 2 moles of Fe and 3 moles of CO2 are produced.
Therefore; Mole ratio of Iron : Carbon dioxide is 2:3
Thus; Moles of Carbon dioxide = (2.9/2)×3
= 4.35 moles
But; 1 mole of CO2 at s.t.p occupies 22.4 liters
Therefore;
Mass of CO2 = 22.4 × 4.35 Moles
= 97.44 L
Answer:
171°F is the answer of this question
Density can be calculated using the following rule:
density=mass/volume
therefore,
volume=mass/density
we have mass=0.451g and density=0.824g/ml
substituting in the above equation, we can calculate the volume as follows:
volume = 0.451/0.824 = 0.547 ml