1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stella [2.4K]
3 years ago
8

Blocks A (mass 3.00 kg ) and B (mass 14.00 kg , to the right of A) move on a frictionless, horizontal surface. Initially, block

B is moving to the left at 0.500 m/s and block A is moving to the right at 2.00 m/s. The blocks are equipped with ideal spring bumpers. The collision is headon, so all motion before and after it is along a straight line. Let +x be the direction of the initial motion of A.Part A) Find the maximum energy stored in the spring bumpers.Part B) Find the velocity of block A when the energy stored in the spring bumpers is maximumPart C) Find the velocity of block B when the energy stored in the spring bumpers is maximum.Part D) Find the velocity of block A after the blocks have moved apart.Part E) Find the velocity of block B after the blocks have moved apart.
Physics
1 answer:
Masja [62]3 years ago
5 0

Answer:

Explanation:

This is a crash problem, the first thing we should observe is if the shock is elastic, in this case the total mechanical energy is conserved, that is our case since the blocks separate after the crash

Part A)

   As the mechanical energy is conserved we will write the energy before the crash and at the point of maximum compression (during the crash)

Initial   Em= K1+K2

            Em = ½ ma Voa² + ½ mb Vob²

End      Em = U          speed zero

          U= ½ ma Voa² + ½ mb Vob²

          U= ½  3  2² + ½ 14 (-0.5)²

          U = 7.75 J  

This is the maximum energy stored

Part B  and C

As the stored energy is maximum, the speed of the blocks is zero

      Va=  0 m/s

      Vb =  0 m/s

Part D and E

  For this part we will also use the conservation of the momentum of movement

Before the Shock     Po = ma Voa + mb Vob

After the shock         Pf = ma Vfa + mb Vfb

                 Po = Pf

        ma Voa + mb Vob = ma Vfa + mb Vfb

        3 2 + 14 (-0.5) = 3 Vfa + 14 Vfb

        -1 = 3 Vfa + 14 Vfb

As the shock is elastic, the mechanical energy is conserved let's write it in the same instants

Before Shock         Ko = ½ m to Voa² + ½ mb Vob²

After the crash       Kf  =  ½ m to Vfa² + ½ mb Vfb²

                            Ko = Kf

           ½ ma Voa² + ½ mb Vob² = ½ ma Voa² + ½ mb Vob²

           ½ 3 2² + ½ 14 0.5² = ½ 3 Vfa² + ½ 14 Vfb²

           7.75 = 1.5 Vfa² + 7Vfb²

We have an equation system of two equations and two unknowns that we can solve

        -1 = 3 Vfa + 14 Vfb

        7.75 = 1.5 Vfa² + 7Vfb²

          Vfa = (-1 - 14 Vfb) / 3

          Vfa² = (7.75 -7 Vfb²) /1.5

Equating the two equation and solving you can get Vbf

         (-1-14Vfb)²/9 = (7.75 -7 Vfb²) /1.5

      (1 + 28 Vfb + 196 Vfb²) = (7.75 - 7 Vfb²) 6

      196 Vfb² +28 Vfb +1 +42 Vfb² - 46.5 = 0

      196 Vfb² + 70 Vfb -45.5 = 0

We solve the second degree equation, the correct answer is that the speed decreases and the sign of the velocity of the body of greater mass does not change

You might be interested in
Calculate the velocity of a car that travels 581 kilometers notheast in 3.5 hours?
Gre4nikov [31]

Answer:

166 km/h

Explanation:

v= d/t= 581/3.5= 166km/h

7 0
3 years ago
What is the average speed of an alien space ship that traveled 10,000 km in 600 hours?
crimeas [40]

Answer:

17,500 miles per hour

Explanation:

3 0
2 years ago
APEX What is one advantage of using primary sources when doing research on an
MissTica

Answer:

C

Explanation:

They are first hand sources so they are more reliable and detailed...

4 0
3 years ago
A spring attached to the ceiling is stretched 2.45 meters by a four kilogram mass. If the mass is set in motion in a medium that
denpristay [2]

Answer:

d²x/dt² = - 4dx/dt - 4x is the required differential equation.

Explanation:

Since the spring force F = kx where k is the spring constant and x its extension = 2.45 equals the weight of the 4 kg mass,

F = mg

kx = mg

k = mg/x

= 4 kg × 9.8 m/s²/2.45 m

= 39.2 kgm/s²/2.45 m

= 16 N/m

Now the drag force f = 16v where v is the velocity of the mass.

We now write an equation of motion for the forces on the mass. So,

F + f = ma (since both the drag force and spring force are in the same direction)where a = the acceleration of the mass

-kx - 16v = 4a

-16x - 16v = 4a

16x + 16v = -4a

4x + 4v = -a where v = dx/dt and a = d²x/dt²

4x + 4dx/dt = -d²x/dt²

d²x/dt² = - 4dx/dt - 4x which is the required differential equation

6 0
3 years ago
8 POINTS AND BRAINIEST FOR CORRECT ANSWER
Fiesta28 [93]
The answer would be B. :)
8 0
2 years ago
Other questions:
  • Coal is considered to be a non-renewable energy source. Which of the following statements is correct? a. Coal is a scarce resour
    14·1 answer
  • The maximum amount of static friction between this chair and the floor is 175 N. Which action would cause the chair to move to t
    9·1 answer
  • Who is the scientist that gave us the photon as a way of describing light as a particle?
    15·1 answer
  • An 8.00-kg point mass and a 12.0-kg point mass are held in place 50.0 cm apart. A particle of mass m is released from a point be
    15·1 answer
  • Light of a single frequency falls on a photo-electric material but no electrons are emitted . Electrons may be emitted if the __
    11·1 answer
  • A spherical mirror is polished on both sides. When the concave side is used as a mirror, the magnification is 4.4. What is the m
    13·1 answer
  • How do you explain Newton’s third law
    13·2 answers
  • A flywheel flows from 250rpm to 150rpm in 4.2 seconds. How many revolutions occur during this time ​
    5·1 answer
  • A uniform metal bar of length 6m and mass 100kg rest with its upper end against a smooth vertical wall and with its lower end on
    13·1 answer
  • Which of the following describes an electric current?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!