1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stella [2.4K]
3 years ago
8

Blocks A (mass 3.00 kg ) and B (mass 14.00 kg , to the right of A) move on a frictionless, horizontal surface. Initially, block

B is moving to the left at 0.500 m/s and block A is moving to the right at 2.00 m/s. The blocks are equipped with ideal spring bumpers. The collision is headon, so all motion before and after it is along a straight line. Let +x be the direction of the initial motion of A.Part A) Find the maximum energy stored in the spring bumpers.Part B) Find the velocity of block A when the energy stored in the spring bumpers is maximumPart C) Find the velocity of block B when the energy stored in the spring bumpers is maximum.Part D) Find the velocity of block A after the blocks have moved apart.Part E) Find the velocity of block B after the blocks have moved apart.
Physics
1 answer:
Masja [62]3 years ago
5 0

Answer:

Explanation:

This is a crash problem, the first thing we should observe is if the shock is elastic, in this case the total mechanical energy is conserved, that is our case since the blocks separate after the crash

Part A)

   As the mechanical energy is conserved we will write the energy before the crash and at the point of maximum compression (during the crash)

Initial   Em= K1+K2

            Em = ½ ma Voa² + ½ mb Vob²

End      Em = U          speed zero

          U= ½ ma Voa² + ½ mb Vob²

          U= ½  3  2² + ½ 14 (-0.5)²

          U = 7.75 J  

This is the maximum energy stored

Part B  and C

As the stored energy is maximum, the speed of the blocks is zero

      Va=  0 m/s

      Vb =  0 m/s

Part D and E

  For this part we will also use the conservation of the momentum of movement

Before the Shock     Po = ma Voa + mb Vob

After the shock         Pf = ma Vfa + mb Vfb

                 Po = Pf

        ma Voa + mb Vob = ma Vfa + mb Vfb

        3 2 + 14 (-0.5) = 3 Vfa + 14 Vfb

        -1 = 3 Vfa + 14 Vfb

As the shock is elastic, the mechanical energy is conserved let's write it in the same instants

Before Shock         Ko = ½ m to Voa² + ½ mb Vob²

After the crash       Kf  =  ½ m to Vfa² + ½ mb Vfb²

                            Ko = Kf

           ½ ma Voa² + ½ mb Vob² = ½ ma Voa² + ½ mb Vob²

           ½ 3 2² + ½ 14 0.5² = ½ 3 Vfa² + ½ 14 Vfb²

           7.75 = 1.5 Vfa² + 7Vfb²

We have an equation system of two equations and two unknowns that we can solve

        -1 = 3 Vfa + 14 Vfb

        7.75 = 1.5 Vfa² + 7Vfb²

          Vfa = (-1 - 14 Vfb) / 3

          Vfa² = (7.75 -7 Vfb²) /1.5

Equating the two equation and solving you can get Vbf

         (-1-14Vfb)²/9 = (7.75 -7 Vfb²) /1.5

      (1 + 28 Vfb + 196 Vfb²) = (7.75 - 7 Vfb²) 6

      196 Vfb² +28 Vfb +1 +42 Vfb² - 46.5 = 0

      196 Vfb² + 70 Vfb -45.5 = 0

We solve the second degree equation, the correct answer is that the speed decreases and the sign of the velocity of the body of greater mass does not change

You might be interested in
Why can we never prove that a hypothesis is true?
erma4kov [3.2K]
A theorem can be proven (from axioms or prior theorems), using logic.

A hypothesis can be supported by evidence. The more evidence in support of the hypothesis, the more likely the hypothesis is to be correct. However, you’re always at the mercy of contrary evidence appearing in the future, to reduce the likelihood or even invalidate a hypothesis.

A (mathematical) proof suffers no such vulnerability to future evidence, as long as you hold the axioms of the theory to be true, and as long as there was no flaw in the construction of the proof.
7 0
3 years ago
A person, with a mass of 50.0 kg, stands on a weighing scale in a lift which is moving
svet-max [94.6K]

Answer:

D

Explanation:

Because I just had that answer

6 0
3 years ago
Suppose an astronaut has landed on Planet * Fully equipped, the astronaut has a
gayaneshka [121]

From the calculations, the value of the acceleration due to gravity is 0.38 m/s^2.

<h3>What is weight?</h3>

The weight of an object is obtained as the product of the mass of the body and the acceleration due to gravity.

Thus;

When;

mass = 120 kg

weight =  46 N

acceleration due to gravity = 46 N/120 kg

=0.38 m/s^2

Learn more about acceleration due to gravity :brainly.com/question/13860566

#SPJ1

7 0
2 years ago
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
eduard
Uhh? Do you have any questions or need help?
7 0
3 years ago
Read 2 more answers
A short-wave radio antenna is supported by two guy wires, 155 ft and 175 ft long. Each wire is attached to the top of the antenn
Vladimir79 [104]

Answer:

163.8 ft

Explanation:

In triangle ABD

AB = 155 ft

Cos63 = \frac{BD}{AB} = \frac{BD}{155}\\BD = 155 Cos63 \\BD = 70.4 ft

Sin63 = \frac{AD}{AB} = \frac{AD}{155} \\AD = 166 Sin63\\AD = 148 ft

Using Pythagorean theorem in triangle ADC

AC^{2} = AD^{2} + DC^{2} \\175^{2} = 148^{2} + DC^{2} \\DC = 93.4 ft

d = distance between the anchor points

distance between the anchor points is given as

d = BD + CD = 70.4 + 93.4\\d = 163.8 ft

5 0
3 years ago
Read 2 more answers
Other questions:
  • 15. A machine must move an object 15.1 meters by exerting a 121 Newton force. If the machine
    6·1 answer
  • .
    5·2 answers
  • If your vehicle breaks down pull off the roadway, and if possible, park so that your vehicle can be seen for ____ feet in each d
    10·1 answer
  • a model rocket flies horizontally off the edge of a cliff at a velocity of 40.0m/s. if the canyon below is 110.0m deep, how far
    14·1 answer
  • What is the displacement for a driver who travels 10 km to get to a point that is 4 km from his starting point
    12·1 answer
  • Find the magnitude of the force needed to accelerate a 300 g mass with a⃗ = -0.205 m/s2 i^+0.700 m/s2 j
    6·1 answer
  • Give the abbreviation for the unit which is equivalent to (kgm)/s2.
    15·1 answer
  • Lincoln weighs 400 newtons. What’s his mass rounded to the nearest kilogram? Assume that acceleration due to gravity is 9.8 N/kg
    5·2 answers
  • A 20 N force acts for 10 s on a skateboard. What is the impulse imparted to the skateboard? What is the skateboard’s change in m
    10·1 answer
  • The graph depicts the velocity and times of Elan and Anna during a race.
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!