Answer:
The answer to your question is: V = 6.93 L
Explanation:
Data
N₂ = 5.6 g
Volume of NH₃ = ?
14 g of N ---------------- 1 mol
5.6 g ----------------------- x
x = (5.6 x 1) / 14 = 0.4 mol of N
Reaction
N₂ + 3H₂ ⇒ 2NH₃
1 mol of N₂ ---------------- 2 moles of NH₃
0.4 mol of N₂ -------------- x
x = (0.4 x 2) / 1
x = 0.8 mol of NH₃
Formula
PV = nRT
P = 5200 torr = 6.84 atm
V = ?
n = 0.8
R = 0.082 atm L/ mol °K
T = 450°C = 723°K
Substitution
V = (0.8)(0.082)(723) / 6.84
V = 6.93 L
Answer:
The answer to your question is below
Explanation:
a) HCl 0.01 M
pH = -log [0.01]
pH = - (-2)
pH = 2
b) HCl = 0.001 M
pH = -log[0.001]
pH = -(-3)
pH = 3
c) HCl = 0.00001 M
pH = -log[0.00001]
pH = - (-5)
pH = 5
d) Distilled water
pH = 7.0
e) NaOH = 0.00001 M
pOH = -log [0.00001]
pOH = -(-5)
pH = 14 - 5
pH = 9
f) NaOH = 0.001 M
pOH =- log [0.001]
pOH = 3
pH = 14 - 3
pH = 11
g) NaOH = 0.1 M
pOH = -log[0.1]
pOH = 1
pH = 14 - 1
pH = 13
Answer:
a)
b)
d)
d)
Explanation:
From the question we are told that:
Moles of N2
Atmospheric pressure
Temperature
Initial heat
a)
Generally the equation for change in temperature is mathematically given by
Where
b)
Generally the equation for ideal gas is mathematically given by
For v double
Therefore
Total Work-done
c)
Generally the equation for amount of heat added is mathematically given by
d)
Generally the equation for change in internal energy of the gas is mathematically given by
Answer:
450. g of 0.173 % KCN solution contains 779 mg of KCN.
Explanation:
Mass of the solution = m
Mass of the KCN in solution = 779 mg
Mass by mass percentage of KCN solution = 0.173%
1 mg = 0.001 g
m = 450,289 mg × 0.001 g = 450.289 mg ≈ 450. g
450. g of 0.173 % KCN solution contains 779 mg of KCN.
the degree or intensity of heat present in a substance or object, especially as expressed according to a comparative scale and shown by a thermometer or perceived by touch. So I would have to go with A.