1) it explains about stability of an atom by including stationary state.
2) it explains tge quantization of energy.
3) it gives the concept of angular momentum of a revolving electron.
While terrestrial biomes are shaped by air temperature and precipitation, aquatic systems are characterized by factors such as water salinity, depth, and whether the water is moving or standing. If that's what you mean?
Answer:
D. 6.00 L
Explanation:
What we have here is an example of Boyle's Law. The equation here is P₁ · V₁ = P₂ · V₂. We know all of the values except for V₂.
60(8) = 80V
<em>Multiply 60 by 8 to get 480.</em>
480 = 80V
<em>Divide both sides by 80.</em>
480/80 = V
6 = V
The final volume for the gas is 6.00 L.
Answer:
Neutrons.
Explanation:
Isotopes can be defined as the atom of an element that has the same number of protons but different number of neutrons. This ultimately implies that, the isotopes of an element have the same atomic number (number of protons) but different atomic mass (number of nucleons).
The isotope of an element is denoted by
Where; X is the symbol of the element.
A is the atomic mass or number of nucleons.
Z is the atomic number or number of protons.
<em>Therefore, the number of neutrons = A - Z</em>
<em>Isotopes of carbon differ with respect to the number of neutrons.</em>
<em>Basically, there are three (3) Isotopes of Carbon and these are;</em>
<em>1. Carbon-12: it has an atomic mass of 12 with 6 numbers of proton and neutron respectively. </em>
<em>2. Carbon-13: it has an atomic mass of 13 with 6 numbers of proton and 7 numbers of neutron. </em>
<em>3. Carbon-14: it has an atomic mass of 14 with 6 numbers of proton and 8 numbers of neutron. </em>
Answer:
Water pressure 0.5 atm
Total Pressure= 2.27 atm
Explanation:
To answer this problem, one has to realize that there are two processes that increase the temperature of the sealed vessel.
First, the dry air in the sealed vessel will be heated which will cause its pressure to increase and it can be determined by the equation:
P₁ x T₂ = P₂ x T₁ ∴ P₂ = P₁ x T₂ / T₁
For the second process, we have an amount of n moles of water which will be released when the copper sulfate is heated. In this case, to determine the value of the the water gas we will use the gas law:
PV = nRT ∴ P = nRT/V
n will we calculated from the quantity of sample.
2.50 g CuSo₄ 5H₂O x 1 mol/ 249.69 g = 0.01 mol CuSo₄ 5H₂O
the amount water of hydration is
= 0.01 mol CuSo₄ 5H₂O * 5 mol H₂O / 1 mol CuSo₄ 5H₂O
= 0.05 mo H₂O
pressure of dry air at the final temperature,
P₂ = 1 atm x 500 K/ 300 K = 1.67 atm
Pressure of water :
P (H₂O) 0.05 mol x 0.08206 Latm/kmol x 500 K/ 4 L = 0.5 atm
∴ Total Pressure = 1.67 atm
H2O Pressure = 0.5 atm