Answer:
8.89288275 m/s
Explanation:
F = Tension = 54 N
= Linear density of string = 5.2 g/m
A = Amplitude = 2.5 cm
Wave velocity is given by
![v=\sqrt{\frac{F}{\mu}}\\\Rightarrow v=\sqrt{\frac{54}{5.2\times 10^{-3}}}\\\Rightarrow v=101.90493\ m/s](https://tex.z-dn.net/?f=v%3D%5Csqrt%7B%5Cfrac%7BF%7D%7B%5Cmu%7D%7D%5C%5C%5CRightarrow%20v%3D%5Csqrt%7B%5Cfrac%7B54%7D%7B5.2%5Ctimes%2010%5E%7B-3%7D%7D%7D%5C%5C%5CRightarrow%20v%3D101.90493%5C%20m%2Fs)
Frequency is given by
![f=\frac{v}{\lambda}\\\Rightarrow f=\frac{101.90493}{1.8}\\\Rightarrow f=56.61385\ Hz](https://tex.z-dn.net/?f=f%3D%5Cfrac%7Bv%7D%7B%5Clambda%7D%5C%5C%5CRightarrow%20f%3D%5Cfrac%7B101.90493%7D%7B1.8%7D%5C%5C%5CRightarrow%20f%3D56.61385%5C%20Hz)
Angular frequency is given by
![\omega=2\pi f\\\Rightarrow \omega=2\pi 56.61385\\\Rightarrow \omega=355.71531\ rad/s](https://tex.z-dn.net/?f=%5Comega%3D2%5Cpi%20f%5C%5C%5CRightarrow%20%5Comega%3D2%5Cpi%2056.61385%5C%5C%5CRightarrow%20%5Comega%3D355.71531%5C%20rad%2Fs)
Maximum velocity of a particle is given by
![v_m=A\omega\\\Rightarrow v_m=0.025\times 355.71531\\\Rightarrow v_m=8.89288275\ m/s](https://tex.z-dn.net/?f=v_m%3DA%5Comega%5C%5C%5CRightarrow%20v_m%3D0.025%5Ctimes%20355.71531%5C%5C%5CRightarrow%20v_m%3D8.89288275%5C%20m%2Fs)
The maximum velocity of a particle on the string is 8.89288275 m/s
Answer: C) Increase the amplitude of the wavelenghth to increase the intensity.
Explanation:
The triangle <span>in the first law of thermodynamics, represents energy that moves from a hot object to a cooler object.</span>
Answer:
![T = 308.6 ^0 C](https://tex.z-dn.net/?f=T%20%3D%20308.6%20%5E0%20C)
Explanation:
Here by ideal gas equation we can say
![PV = nRT](https://tex.z-dn.net/?f=PV%20%3D%20nRT)
now we know that pressure is kept constant here
so we will have
![V = \frac{nR}{P} T](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7BnR%7D%7BP%7D%20T)
since we know that number of moles and pressure is constant here
so we have
![\frac{V_2}{V_1} = \frac{T_2}{T_1}](https://tex.z-dn.net/?f=%5Cfrac%7BV_2%7D%7BV_1%7D%20%3D%20%5Cfrac%7BT_2%7D%7BT_1%7D)
now we know that initial temperature is 17.8 degree C
and finally volume is doubled
So we have
![\frac{2V}{V} = \frac{T_2}{(273 + 17.8)}](https://tex.z-dn.net/?f=%5Cfrac%7B2V%7D%7BV%7D%20%3D%20%5Cfrac%7BT_2%7D%7B%28273%20%2B%2017.8%29%7D)
so final temperature will be
![T_2 = 581.6 k](https://tex.z-dn.net/?f=T_2%20%3D%20581.6%20k)
![T_2 = 308.6 ^o C](https://tex.z-dn.net/?f=T_2%20%3D%20308.6%20%5Eo%20C)
Answer:
Option (C) is the answer
Explanation:
may be it is possible if that we stand so far