Answer:
B)
The magnitude of induced emf in the conducting loop is 0.99 mV.
Explanation:
Rate of increase in magnetic field per unit time = 0.090 T/s
Area of the conducting loop = 110 cm^2 = 0.0110 m^2
Electromagnetic induction is the production of an emf or voltage in a coil of wire due to a changing magnetic field through the coil.
Induced e.m.f is given as:
EMF = (-N*change in magnetic field/time)*Area
EMF = rate of change of magnetic field per unit time * Area
EMF = 0.090 * 0.0110
EMF = 0.00099 V
EMF = 0.99 mV
Answer:
Distance = 16.9 m
Explanation:
We are given;
Power; P = 70 W
Intensity; I = 0.0195 W/m²
Now, for a spherical sound wave, the intensity in the radial direction is expressed as a function of distance r from the center of the sphere and is given by the expression;
I = Power/Unit area = P/(4πr²)
where;
P is the sound power
r is the distance.
Thus;
Making r the subject, we have;
r² = P/4πI
r = √(P/4πI)
r = √(70/(4π*0.0195))
r = √285.6627
r = 16.9 m
Answer:
7.55 km/s
Explanation:
The force of gravity between the Earth and the Hubble Telescope corresponds to the centripetal force that keeps the telescope in uniform circular motion around the Earth:

where
is the gravitational constant
is the mass of the telescope
is the mass of the Earth
is the distance between the telescope and the Earth's centre (given by the sum of the Earth's radius, r, and the telescope altitude, h)
v = ? is the orbital velocity of the Hubble telescope
Re-arranging the equation and substituting numbers, we find the orbital velocity:

<span>Map Key or Legend. A map key or legend is included with a map to unlock it. It gives you the information needed for the map to make sense. Maps often use symbols or colors to represent things, and the map key explains what they mean</span>