Answer:
Hz
Explanation:
We know that
1 cm = 0.01 m
= Length of the human ear canal = 2.5 cm = 0.025 m
= Speed of sound = 340 ms⁻¹
= First resonant frequency
The human ear canal behaves as a closed pipe and for a closed pipe, nth resonant frequency is given as

for first resonant frequency, we have n = 1
Inserting the values


Hz
What information can scientists obtain from tree rings?
Answer's <u>I chose</u>:
<h3>how narrow the rings are</h3><h3>how the climate changed in the tree’s life</h3><h3>how wide the rings are</h3>
Please <u>correct</u> me if there are <em>more </em>or <em>less</em>
Please give a brainliest and a thanks.
<h2>❣</h2>
To develop this problem it is necessary to apply the concepts related to the Dopler effect.
The equation is defined by

Where
= Approaching velocities
= Receding velocities
c = Speed of sound
v = Emitter speed
And

Therefore using the values given we can find the velocity through,


Assuming the ratio above, we can use any f_h and f_i with the ratio 2.4 to 1


Therefore the cars goes to 145.3m/s