I'll be happy to solve the problem using the information that
you gave in the question, but I have to tell you that this wave
is not infrared light.
If it was a wave of infrared, then its speed would be close
to 300,000,000 m/s, not 6 m/s, and its wavelength would be
less than 0.001 meter, not 12 meters.
For the wave you described . . .
Frequency = (speed) / (wavelength)
= (6 m/s) / (12 m)
= 0.5 / sec
= 0.5 Hz .
(If it were an infrared wave, then its frequency would be
greater than 300,000,000,000 Hz.)
Is the variable you change, independent, I, something I change.
Answer:
12.7m/s
Explanation:
Given parameters:
Mass of diver = 77kg
Height of jump = 8.18m
Unknown:
Final velocity = ?
Solution:
To solve this problem, we apply the motion equation below:
v² = u² + 2gH
v is the final velocity
u is the initial velocity
g is the acceleration due to gravity
H is the height
Now insert the parameters and solve;
v² = 0² + 2 x 9.8 x 8.18
v = 12.7m/s
The angular momentum of an object is equal to the product of its moment of inertia and angular velocity.
L = Iω
I = 1/2 MR²
I = 1/2 x 13 x (0.2)
I = 1.3
ω = 2π/t
ω = 2π/0.3
ω = 20.9
L = 1.3 x 20.9
= 27.2 kgm²/s
(a) The acceleration of the system is determined as 1.58 m/s².
(b) The relative weight of P is pounds is determined as 0.14 lb.
<h3>
Acceleration of the system</h3>
The acceleration of the system is calculated as follows;
W - T = m₂a --- (1)
T = m₁a ----(2)
μmgsinθ - m₁a = m₂a
(0.3 x 3 x 9.8 x sin40) - (0.4 + 0.2)a = 3a
5.67 - 0.6a = 3a
5.67 = 3.6a
a = 5.67/3.6
a = 1.58 m/s²
<h3>
Relative Weight of P</h3>
W = ma
W = 0.4 x 1.58
W = 0.632 N = 0.14 lb
Learn more about weight here: brainly.com/question/2337612
#SPJ1