Answer:
- The velocity component in the flow direction is much larger than that in the normal direction ( A )
- The temperature and velocity gradients normal to the flow are much greater than those along the flow direction ( b )
Explanation:
For a steady two-dimensional flow the boundary layer approximations are The velocity component in the flow direction is much larger than that in the normal direction and The temperature and velocity gradients normal to the flow are much greater than those along the flow direction
assuming Vx ⇒ V∞ ⇒ U and Vy ⇒ u from continuity equation we know that
Vy << Vx
Frequency and wavelength are inversely proportional.
A shorter wavelength implies a higher frequency.
During a climb UP the mountain, gravity does NO work on the climber.
Actually, it's more correct to say that gravity does NEGATIVE work
on him. The climber has to DO the positive work to haul himself up.
Work = (mass) x (gravity) x (height) .
For the guy in this problem:
Work = (67 kg) x (9.8 m/s²) x (3,500 meters)
= 2,298,100 joules.
If he eats no candy bars on the way, and completely depends on
his stored body fat for the energy, then he'll burn off
(2,298,100 joules) / (3.8 x 10⁷ joules/kg)
= 0.06 kg of fat.
That's only about 2.1 ounces. We KNOW he'll lose more weight than that,
climbing 11,000 feet. That's because climbing is pretty inefficient.
In addition to the potential energy you have to give your body weight,
you also have to expend energy breathing, digesting, metabolizing,
and sweating.
Answer:
-48,800,000 or 71,200,000
Explanation:
subtraction or addition :D
I hope I helpped (ㆁωㆁ)