Answer:
Vertical Height = 0.784 meter, Speed back at starting point = 10 m/s
Explanation:
Given Data:
V is the overall velocity vector,
and
are its initial vertical and horizontal components

To find:
Max Height
achieved
Calculation:
1) Using the
equation of motion, we know

2) In terms of gravity
height
and the vertical component of Velocity
.
3) As
as at maximum height the vertical component of velocity is zero maximum height achieved

putting values
4) 
5) As for the speed when it reaches back its starting point, it will have a speed similar to its launching speed, the reason being the absence of air friction (Air drag)
Formula for orbital speed, v = √(GM/R)
Where G is the universal gravitational constant, M = Central Mass,
R = Distance between centers of Mass.
Given. v = 68 m/s, M = ? , R = 410 km = 410000 m., G = 6.674 * 10⁻¹¹ Nm²/kg²
68 = √(GM/R)
68 = √(6.674 * 10⁻¹¹ * M/410000)
68² = (6.674 * 10⁻¹¹ * M)/410000
(68² * 410000) / 6.674 * 10⁻¹¹ = M
2.84 × 10¹⁹ = M
Mass of Planet Y = 2.84 × 10¹⁹ kg
Answer:
soi nuevo
Explanation:me regalan puntos
Answer:
It will cause kinetic energy to increase.
Explanation:
Given that Speed and Motion you went from the starting line to the finish line at different rates.
If you repeated the activity while carrying weights but keeping your times the same, the weight carried will add up to the mass of the body.
And since Kinetic energy K.E = 1/2mv^2
Increase in the mass of the body will definitely make the kinetic energy of the body to increase.
Since the time is the same, that means the speed V is the same.
Weight W = mg
m = W/g
The new kinetic energy will be:
K.E = 1/2(M + m)v^2
This means that there will be increase in kinetic energy.
Answer:
2.068 x 10^6 m / s
Explanation:
radius, r = 5.92 x 10^-11 m
mass of electron, m = 9.1 x 10^-31 kg
charge of electron, q = 1.6 x 10^-19 C
As the electron is revolving in a circular path, it experiences a centripetal force which is balanced by the electrostatic force between the electron and the nucleus.
centripetal force = 
Electrostatic force = 
where, k be the Coulombic constant, k = 9 x 10^9 Nm^2 / C^2
So, balancing both the forces we get



v = 2.068 x 10^6 m / s
Thus, the speed of the electron is give by 2.068 x 10^6 m / s.