We know that the change in momentum is equals to the product of force and time that is impulse (
). Therefore, we need to determine the value of that the water is in air by using the second equation of motion,

Here, u is initial velocity which is zero.
.
Thus, impulse

From Newton`s second law,

Therefore, impulse

Given,
and 
Substituting these values, we get
Change in momentum = impulse
.
1.4 N is a weight so calculating it's mass
1.4/9.8 = 0.1428 kg
momentum will be 0.1428*44.7 = 6.38 kgm/s
Answer
given,
before collision
mass of car A = m_a = 1300 kg
velocity of car A = v_a = 35 mph
mass of car B = m_b= 1000 kg
velocity of car B = v_b = 25 mph
after collision
V_a = 30 mph
V_b = 31.5 mph
Initial momentum



final momentum



here initial momentum is equal to the final momentum of the car.
hence, momentum is conserved in the collision.
Answer: A
Explanation: How large a parachute is (in other words, the parachute's surface area) affects its air resistance, or drag force. ... In the case of these parachutes, the drag force is opposite to the force of gravity, so the drag force slows the parachutes down as they fall.