Answer:
8.89 m/s² west
Explanation:
Assume east is +x. Given:
v₀ = 120 m/s
v = 0 m/s
t = 13.5 s
Find: a
v = at + v₀
0 m/s = a (13.5 s) + 120 m/s
a = -8.89 m/s²
a = 8.89 m/s² west
Answer:
Yes, Mirror are a surface that reflects light more perfectly than ordinary objects.
Explanation:
Answer:
t = 4.21x10⁻⁷ s
Explanation:
The time (t) can be found using the angular velocity (ω):
<em>Where θ: is the angular displacement = π (since it moves halfway through a complete circle)</em>
We have:
<u>Where</u>:
<em>v: is the tangential speed </em>
<em>r: is the radius</em>
The radius can be found equaling the magnetic force with the centripetal force:

Where:
m: is the mass of the alpha particle = 6.64x10⁻²⁷ kg
q: is the charge of the alpha particle = 2*p (proton) = 2*1.6x10⁻¹⁹C
B: is the magnetic field = 0.155 T
Hence, the time is:

Therefore, the time that takes for an alpha particle to move halfway through a complete circle is 4.21x10⁻⁷ s.
I hope it helps you!
Your diagram should include four forces:
• the box's weight, pointing down (magnitude <em>w</em> = 43.2 N)
• the normal force, pointing up (mag. <em>n</em>)
• the applied force, pointing the direction in which the box is sliding (mag. <em>p</em> = 6.30 N, with <em>p</em> for "pull")
• the frictional force, pointing oppoiste the applied force (mag. <em>f</em> )
The box is moving at a constant speed, so it is inequilibrium and the net forces in both the vertical and horizontal directions sum to 0. By Newton's second law, we have
<em>n</em> + (-<em>w</em>) = 0
and
<em>p</em> + (-<em>f</em> ) = 0
So then the forces have magnitudes
<em>w</em> = 43.2 N
<em>n</em> = <em>w</em> = 43.2 N
<em>p</em> = 6.30 N
<em>f</em> = <em>p</em> = 6.30 N