Answer: 0.1 m/s
Explanation:
Use formula,
v = f * w where, v is speed, f is frequency and w is wavelength.
Now,
v = 2 * 5 * 10 ^ -2 ( Remember to convert all the units to SI units. Here 5 cm becomes 5 * 10 ^ -2 m. )
v = 0.1 m/s.
Answer:
No
Explanation:
She will not be able to measure the length of her window accurately due to instrumental error from her choice of instrument. The elastic nature of her tape would alter the measurement because it will stretch as she is taking her readings, thus reducing the true measurement of the length of her window.
To measure the length of her window, she could use an inelastic tape rule or a metre rule. These instruments would eliminate instrumental error.
Answer:
4.9 x 10^-19 J, 2.7 x 10^-19 J
Explanation:
first wavelength, λ1 = 410 nm = 410 x 10^-9 m
Second wavelength, λ2 = 750 nm = 750 x 10^-9 m
The relation between the energy and the wavelength is given by
E = h c / λ
Where, h is the Plank's constant and c be the velocity of light.
h = 6.63 x 10^-34 Js
c = 3 x 10^8 m/s
So, energy correspond to first wavelength
E1 = (6.63 x 10^-34 x 3 x 10^8) / (410 x 10^-9) = 4.85 x 10^-19 J
E1 = 4.9 x 10^-19 J
So, energy correspond to second wavelength
E2 = (6.63 x 10^-34 x 3 x 10^8) / (750 x 10^-9) = 2.652 x 10^-19 J
E2 = 2.7 x 10^-19 J
For vertical motion, use the following kinematics equation:
H(t) = X + Vt + 0.5At²
H(t) is the height of the ball at any point in time t for t ≥ 0s
X is the initial height
V is the initial vertical velocity
A is the constant vertical acceleration
Given values:
X = 1.4m
V = 0m/s (starting from free fall)
A = -9.81m/s² (downward acceleration due to gravity near the earth's surface)
Plug in these values to get H(t):
H(t) = 1.4 + 0t - 4.905t²
H(t) = 1.4 - 4.905t²
We want to calculate when the ball hits the ground, i.e. find a time t when H(t) = 0m, so let us substitute H(t) = 0 into the equation and solve for t:
1.4 - 4.905t² = 0
4.905t² = 1.4
t² = 0.2854
t = ±0.5342s
Reject t = -0.5342s because this doesn't make sense within the context of the problem (we only let t ≥ 0s for the ball's motion H(t))
t = 0.53s
Answer:
The product of mass and velocity is the correct answer
Explanation:
Momentum is defined as mass × velocity
p = mv