2) Unbalanced. Mike will push the box with a force of 20 N. The forces would be balanced if the box responded with 30 N.
3) Balanced. Both boys are pulling with the same force. Neither is winning.
4) Unbalanced. The rope will move with 10 N to the west. The teachers are winning.
5) Unbalanced. The kids are pulling 220 N to the east. The kids are winning.
6) Balanced. You and the dog are pulling with the same force.
Answer:
Hydrated iron(III) oxide, or ferric oxide
Explanation:
Answer:
The force they will exert on each other is 1.6*10⁻¹⁰ N
Explanation:
The electromagnetic force is the interaction that occurs between bodies that have an electric charge. When the charges are at rest, the interaction between them is called the electrostatic force. Depending on the sign of the interacting charges, the electrostatic force can be attractive or repulsive. The electrostatic interaction between charges of the same sign is repulsive, while the interaction between charges of the opposite sign is attractive.
Coulomb's law is used to calculate the electric force acting between two charges at rest. This force depends on the distance "r" between the electrons and the charge of both.
Coulomb's law is represented by:

where:
- F = electric force of attraction or repulsion in Newtons (N). Like charges repel and opposite charges attract.
- k = is the Coulomb constant or electrical constant of proportionality.
- q = value of the electric charges measured in Coulomb (C).
- r = distance that separates the charges and that is measured in meters (m).
In this case:
- k= 9*10⁹

- q1= 1.602*10⁻¹⁹ C
- q2= 1.602*10⁻¹⁹ C
- r= 1.2*10⁻⁹ m
Replacing:

and solving you get:
F=1.6*10⁻¹⁰ N
<u><em>The force they will exert on each other is 1.6*10⁻¹⁰ N</em></u>
Answer:
Therefore,
The frequency heard by the engineer on train 1

Explanation:
Given:
Two trains on separate tracks move toward each other
For Train 1 Velocity of the observer,

For Train 2 Velocity of the Source,

Frequency of Source,

To Find:
Frequency of Observer,
(frequency heard by the engineer on train 1)
Solution:
Here we can use the Doppler effect equation to calculate both the velocity of the source
and observer
, the original frequency of the sound waves
and the observed frequency of the sound waves
,
The Equation is

Where,
v = velocity of sound in air = 343 m/s
Substituting the values we get

Therefore,
The frequency heard by the engineer on train 1
